Impacts of Trace Minerals Supplementation on Reproductive Performance and Blood Parameters of Ghezel Ewes
الموضوعات :S. Vatankhah 1 , Marziyeh Ebrahimi 2 , A. Taghizadeh 3 , R. Asadpour 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
الکلمات المفتاحية: ewe, reproductive performance, trace minerals,
ملخص المقالة :
Nutrition is critical to maximizing genetic potential. Trace minerals play an important role in animal diets and can influence productivity and reproduction. Therefore, a study was conducted to evaluate the effects of trace mineral supplementation on reproductive function, hormonal and biochemical blood parameters in Ghezel ewes. Accordingly, 30 ewes were treated with three dietary treatments for a period of five weeks: 1- Flushed with trace minerals (TM): (Fe, Cu, Mn, Co, Se, Zn, and Cr), 2- Flushed without trace minerals (NTM) 3- Control (CON): only pasture grazed only. Estrus synchronization was achieved by intravaginal fluorogestone acetate sponges for 12 days interval + 400 IU PMSG injection. The number of follicles and pregnancy were determined by ultrasound. Blood samples were also taken during the experiment. The ex-periment showed that the TM group had higher lambing rate, twinning, prolificacy as well as higher preg-nancy rate during the first estrus than the other groups (P<0.05), though no effect was observed on the number of follicles groups (P>0.05). Total protein and triglyceride were also lower in the TM group com-pared to the other groups (P<0.05). T4 level was higher in TM group (P<0.01). Progesterone and glu-tathione peroxidase activity were also highest in the TM group (P<0.05). Malondialdehyde levels were highest in the NTM group (P<0.05). Serum estradiol and enzymes were not affected by the treatments (P>0.05). In general, TM supplementation improved reproductive performance and some blood biochemi-cal parameters.
Abdian Samarin A., Norouzian M.A. and Afzalzadeh A. (2022). The effect of trace mineral source on nutrients digestibility and ruminal fermentation parameters. Iranian J. Appl. Anim. Sci. 12, 281-286.
Abdollahi E., Kohram H., Shahir M.H. and Nemati M.H. (2015). The influence of a slow-release multi-trace element ruminal bolus on trace element status, number of ovarian follicles and pregnancy outcomes in synchronized Afshari ewes. Iranian J. Vet. Res. 16, 63-71.
Aksu T. and Ozsoy B. (2010). The effects of lower supplementa-tion levels of organically complexed minerals (zinc, copper and manganese) versus inorganic forms on hematological and biochemical parameters in broilers. Kafkas. Univ. Vet. Fak. Derg. 16, 553-559.
Alimohamady R., Aliarabi H., Bruckmaier R.M. and Christensen R.G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biol. Trace Elem. Res. 189, 75-84.
Amanlou H., Khebri M., Rostami B., Eslamian Farsuni N., Amir-abadi Farahani T. and Khalili M. (2020). Effects of feeding different trace mineral sources on performance and health of Afshari ewes and lambs. Iranian J. Appl. Anim. Sci. 51, 183-192.
Antunović Z., Šperanda M.A. and Steiner Z.V. (2004). The influ-ence of age and the reproductive status to the blood indicators of the ewes. Arch. Anim. Breed. 47, 265-273.
Arora M., Mahat R.K., Kumar S., Mustafa I. and Sah S.P. (2018). Study of trace elements in patients of hypothyroidism with special reference to zinc and copper. Biomed. J. Sci. Tech. Res. 6(2), 5190-5194.
Arthur J.R. and Beckett G.J. (1989). Selenium in Biology and Medicine. Springer Berlin Heidelberg. Berlin, Germany.
Atashi H. and Izadifar J. (2012). Estimation of individual heterosis for lamb growth in Ghezal and Mehraban sheep. Iranian J. Appl. Anim. Sci. 2, 127-130.
Çokuğraş A.N. (2003). Butyrylcholinesterase: Structure and physiological importance. Turkish J. Biochem. 28, 54-61.
Daghigh Kia H., Saedi S. and Hosseinkhani A. (2019). Effects of organic and inorganic selenium supplementation with vitamin E during the flushing period on reproductive performance of Ghezel ewes. Iranian J. Appl. Anim. Sci. 9, 433-441.
Díaz-García L.H. (2019). Organic and inorganic selenium sup-plementation on the productive and reproductive performance of hair ewes. Instituto de Ciencias Biomédicas. Available at: http://cathi.uacj.mx/20.500.11961/8105.
Domínguez-Vara I.A., González-Muñoz S.S., Pinos-Rodríguez J.M., Bórquez-Gastelum J.L., Bárcena-Gama R., Mendoza-Martínez G., Zapata L.E. and Landois-Palencia L.L. (2009). Effects of feeding selenium-yeast and chromium-yeast to fin-ishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Anim. Feed Sci. Technol. 152, 42-49.
Ebrahimi M., Towhidi A. and Nikkhah A. (2009). Effect of or-ganic selenium (Sel-Plex) on thermometabolism, blood chemical composition and weight gain in Holstein suckling calves. Asian-Australasian J. Anim. Sci. 22, 984-992.
Egan A.R. (1972). Reproductive responses to supplemental zinc and manganese in grazing Dorset Horn ewes. Australian J. Exp. Agric. 12, 131-135.
El-Demerdash F.M. and Nasr H.M. (2014). Antioxidant effect of selenium on lipid peroxidation, hyperlipidemia and biochemi-cal parameters in rats exposed to diazinon. J. Trace Elem. Med. Biol. 28, 89-93.
Esterbauer H. and Cheeseman K.H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407-421.
Farrag B., El-Hamid I.S.A., El-Rayes M.A.H., Shedeed H.A. and Younis F.E. (2021). Effect of some organic and mineral salts supplementation on hematological, biochemical, immunologi-cal constituents and reproduction in Hassani goats under arid conditions. Adv. Anim. Vet. Sci. 9, 2036-2046.
Garner T.B., Hester J.M., Carothers A. and Diaz F.J. (2021). Role of zinc in female reproduction. Biol. Reprod. 104, 976-994.
Gokani R. (2014). Serum cholinesterase as diagnostic marker of liver disease. Literacy. 5, 16-7.
Gonzalez-Rivas P.A., Lean G.R., Chambers M. and Liu J. (2023). A trace mineral injection before joining and lambing increases marking percentages and lamb weights on diverse farms in Victoria, Australia. Animals. 13, 178-185.
Grace N.D., Knowles S.O. and West D.M. (2006). Dose-response effects of long-acting injectable vitamin B12 plus selenium (Se) on the vitamin B12 and Se status of ewes and their lambs. N. Zeal. Vet. J. 54, 67-72.
Haldar S., Mondal S., Samanta S. and Ghosh T.K. (2009). Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against peste des petits rumi-nants in dwarf Bengal goats (Capra hircus). Animal. 3, 209-217.
Hasani N., Ebrahimi M., Ghasemi-Panahi B. and HosseinKhani A. (2018). Evaluating reproductive performance of three estrus synchronization protocols in Ghezel ewes. Theriogenology. 122, 9-13.
Hidiroglou M., Ho S.K. and Standish J.F. (1978). Effects of die-tary manganese levels on reproductive performance of ewes and on tissue mineral composition of ewes and day-old lambs. Canadian J. Anim. Sci. 58, 35-41.
Hostetler C.E., Kincaid R.L. and Mirando M.A. (2003). The role of essential trace elements in embryonic and fetal development in livestock. Vet. J. 166(2), 125-139.
Jin X., Meng L., Zhang R., Tong M., Qi Z. and Mi L. (2023). Effects of essential mineral elements deficiency and supple-mentation on serum mineral elements concentration and bio-chemical parameters in grazing Mongolian sheep. Front. Vet. Sci. 10, 1214346.
Joshi P. (2022). Nutrition and Reproduction in Sheep. Food Agri-bus. Manag. 3, 48-52.
Kujur K.E.Y.A., Ghosh S., Batabyal S. and Mukherjee J.O.Y.D.E.E.P. (2016). Effect of micronutrient supplementa-tion on the hormonal profile of local goat and sheep breeds of West Bengal. Indian J. Anim. Sci. 86, 224-225.
Kumar S., Pandey A.K., AbdulRazzaque W.A. and Dwivedi D.K. (2011). Importance of micro minerals in reproductive per-formance of livestock. Vet. World. 4, 230-238.
Kuru B.B., Ölmez V. and Kuru M. (2024). Effect of Bakofix® treatment prior to estrus synchronization on selected fertility parameters in Anatolian Merino ewes during the non-breeding season. Med. Weter. 80, 395-400.
Lamb G.C., Brown D.R., Larson J.E., Dahlen C.R., DiLorenzo N., Arthington J.D. and DiCostanzo A. (2008). Effect of organic or inorganic trace mineral supplementation on follicular re-sponse, ovulation, and embryo production in superovulated Angus heifers. Anim. Reprod. Sci. 106, 221-231.
Lamraoui R., Gherissi D.E., Afri-Bouzebda F., Bouzebda Z. and Chacha F. (2024). Pregnancy-related changes of the blood biochemical profile in Ouled Djellal ewe’s Breed under semi-arid conditions (Algeria). Folia Vet. 68, 1-9.
Liu B., Xiong P., Chen N., He J., Lin G., Xue Y., Li W. and Yu D. (2016). Effects of replacing of inorganic trace minerals by or-ganically bound trace minerals on growth performance, tissue mineral status, and fecal mineral excretion in commercial grower-finisher pigs. Biol. Trace Elem. Res. 173, 316-324.
Ma Y.L., Lindemann M.D., Pierce J.L., Unrine J.M. and Crom-well G.L. (2014). Effect of inorganic or organic selenium sup-plementation on reproductive performance and tissue trace mineral concentrations in gravid first-parity gilts, fetuses, and nursing piglets. J. Anim. Sci. 92, 5540-5550.
Mackenzie G.G., Salvador G.A., Romero C., Keen C.L. and Oteiza P.I. (2011). A deficit in zinc availability can cause al-terations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic. Biol. Med. 51, 480-489.
Martínez-Morcillo S., Barrales I., Pérez-López M., Rodríguez F.S., Peinado J.S. and Míguez-Santiyán M.P. (2024). Mineral and potentially toxic element profiles in the soil-feed-animal continuum: Implications for public, environmental, and live-stock health in three pasture-based sheep farming systems. Sci. Total Environ. 919, 170860-170869.
Mousaie A., Valizadeh R., Naserian A.A., Heidarpour M. and Mehrjerdi H.K. (2014). Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biol. Trace Elem. Res. 162, 113-123.
Moussafir Z., Moula A.B., Allai L., Ouamani A., Nasser B., Rakib K., Essamadi A.K. and El Amiri B. (2023). Dynamics of some blood biochemical parameters in Boujaâd ewes from early to late gestation and the possibility of early pregnancy diagnosis. Agric. Sci. Technol. 15, 1313-8820.
Nagalakshmi D., Rao K.S., Kumari G.A., Parashuramulu S. and Sridhar K. (2017). Replacement of inorganic zinc with various organic zinc sources on haematological constituents, antioxi-dant status, immune response and reproductive efficiency in rats. Int. J. Curr. Microbiol. App. Sci. 6, 922-932.
Nie X., Yin Y., Lu Q., Zhao F., Dai Y., Wang R., Ji Y., Zhang H. and Zhu C. (2025). The potential of supplementing compound organic trace elements at lower levels in Chinese yellow-feathered broiler diets, Part I: Impacts on plasma biochemical parameters, antioxidant capacity, carcass traits, meat quality, and tissue mineral deposition. Poult. Sci. 104, 104580-104588.
Nikhil Kumar Tej J., Johnson P., Krishna K., Kaushik K., Gupta P.S.P., Nandi S. and Mondal S. (2021). Copper and selenium stimulates CYP19A1 expression in caprine ovarian granulosa cells: possible involvement of AKT and WNT signalling pathways. Mol. Biol. Rep. 48, 3515-3527.
Novoselec J., Klir Šalavardić Ž., Đidara M., Novoselec M., Vuković R., Ćavar S. and Antunović Z. (2022). The effect of maternal dietary selenium supplementation on blood antioxi-dant and metabolic status of ewes and their lambs. Antioxi-dants. 11, 1664-1675.
Osredkar J. and Sustar N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. J. Clinic. Toxicol. 3, 495-505.
Paulíková I., Seidel H., Nagy O., Tothova C.S., Konvičná J., Ka-daši M. and Kováč G. (2017). Thyroid hormones, insulin, body fat, and blood biochemistry indices in dairy cows during the reproduction/production cycle. Folia Vet. 61, 43-53.
Perry G.A., Perkins S.D., Northrop E.J., Rich J.J., Epperson K.M., Andrews T.N., Kline A.C., Quail L.K., Walker J.A., Wright C.L. and Russell J.R. (2021). Impact of trace mineral source on beef replacement heifer growth, reproductive development, and biomarkers of maternal recognition of pregnancy and em-bryo survival. J. Anim. Sci. 99, 160-198.
Qiu J., Zhou P. and Shen X. (2022). Effects of Se-yeast on im-mune and antioxidant in the Se-deprived Pishan red sheep. Biol. Trace Elem. Res. 200, 2741-2749.
Roychoudhury S., Nath S., Massanyi P., Stawarz R., Kacaniova M. and Kolesarova A. (2016). Copper-induced changes in re-productive functions: In vivo and in vitro effects. Physiol. Res. 65, 11-22.
Rutigliano H.M., Lima F.S., Cerri R.L., Greco L.F., Vilela J.M., Magalhães V., Silvestre F.T., Thatcher W.W. and Santos J.E. (2008). Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows. J. Dairy Sci. 91, 3323-3336.
Safdar A.H.A., Maghami S.P.M.G. and Nejad A.E. (2020). Effect of using supplementation mineral or organic selenium with vi-tamin E as antioxidants in the flushing diet on the fertility of ewes. Indian J. Anim. Res. 90, 1151-1154.
Sánchez J., Jiménez A., Regodón S. and Andrés S. (2008). Inhibi-tory effect of selenium supplementation on the reproductive performance in synchronized merino sheep at range conditions in a selenium-deficient area. Reprod. Domest. Anim. 43, 328-332.
SAS Institute. (2013). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Seifalinasab A., Mousaie A. and Doomary H. (2022). Dietary high chromium-methionine supplementation in summer-exposed finishing lambs: Impacts on feed intake, growth performance, and blood cells, antioxidants, and minerals. Biol. Trace Elem. Res. 200, 156-163.
Sethy K., Behera K., Mishra S.K., Gupta S.K., Sahoo N., Parhi S.S., Mahapatra M.R. and Khadanga S. (2018). Effect of or-ganic zinc supplementation on growth, metabolic profile and antioxidant status of Ganjam sheep. Indian J. Anim. Res. 52, 839-842.
Shi L., Ren Y., Zhang C., Yue W. and Lei F. (2018). Effects of organic selenium (Se-enriched yeast) supplementation in ges-tation diet on antioxidant status, hormone profile and haemato-biochemical parameters in Taihang Black Goats. Anim. Feed Sci. Technol. 238, 57-65.
Sobhanirad S. and Naserian A.A. (2012). Effects of high dietary zinc concentration and zinc sources on hematology and bio-chemistry of blood serum in Holstein dairy cows. Anim. Feed Sci. Technol. 177, 242-246.
Suttle N. (2010). Mineral Nutrition of Livestock. CABI, Walling-ford, UK.
Sy G., Ak Z., Özyurtlu N. and Icen H. (2009). Investigation of some biochemical parameters and mineral substance during pregnancy and postpartum period in Awassi ewes. Kafkas. Univ. Vet. Fak. Derg. 15, 957-963.
Todini L. (2007). Thyroid hormones in small ruminants: effects of endogenous, environmental and nutritional factors. Animal. 1, 997-1008.
Toghdory A., Asadi M., Ghoorchi T. and Hatami M. (2023). Im-pacts of organic manganese supplementation on blood min-eral, biochemical, and hematology in Afshari ewes and their newborn lambs in the transition period. J. Trace Elem. Med. Biol. 79, 127215.
Turan S., Topcu B., Gökçe İ., Güran T., Atay Z., Omar A., Akçay T. and Bereket A. (2011). Serum alkaline phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores in different types of rickets. J. Clin. Res. Pediatr. En-docrinol. 3, 7-15.
Uslu B.A., Mis L., Gulyuz F., Comba B., Ucar O., Tasal I., Comba A., Kosal V., Sendag S. and Wehrend A. (2017). Is there a relationship between serum minerals (Ca, Mg) and trace elements (Cu, Fe, Mn, Zn) at mating on pregnancy rates in fat-tailed Morkaraman sheep? Indian J. Anim. Res. 51, 256-262.
Vázquez-Armijo J.F., Rojo R., López D., Tinoco J.L., González A., Pescador N. and Domínguez-Vara I.A. (2011). Trace ele-ments in sheep and goats reproduction: a review. Trop. Sub-trop. Agroecosyst. 14, 1-13.
Vorhaus L.J. and Kark R.M. (1953). Serum cholinesterase in health and disease. Am. J. Med. 14, 707-719.
Xie J., Tian C., Zhu Y., Zhang L., Lu L. and Luo X. (2014). Ef-fects of inorganic and organic manganese supplementation on gonadotropin-releasing hormone-I and follicle-stimulating hormone expression and reproductive performance of broiler breeder hens. Poult. Sci. 93, 959-969.
Yan X., Zhang W., Cheng J., Wang R., Kleemann D.O., Zhu X. and Jia Z. (2008). Effects of chromium yeast on performance, insulin activity, and lipid metabolism in lambs fed different dietary protein levels. Asian-australasian J. Anim. Sci. 21, 853-860.
Yaqoob M.U., Wang G., Sun W., Pei X., Liu L., Tao W., Xiao Z., Wang M., Huai M., Li L. and Pelletier W. (2020). Effects of inorganic trace minerals replaced by complexed glycinates on reproductive performance, blood profiles, and antioxidant status in broiler breeders. Poult. Sci. 99, 2718-2726.
Yasui T., Ryan C.M., Gilbert R.O., Perryman K.R. and Overton T.R. (2014). Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows. Int. J. Dairy Sci. 97, 3728-3738.
Yatoo M.I., Saxena A., Deepa P.M., Habeab B.P., Devi S., Jatav R.S. and Dimri U. (2013). Role of trace elements in animals: A review. Vet. World. 6, 963-972.
Yiqin C., Yan S., Peiwen W., Yiwei G., Qi W., Qian X., Panglin W., Sunjie Y. and Wenxiang W. (2022). Copper exposure dis-rupts ovarian steroidogenesis in human ovarian granulosa cells via the FSHR/CYP19A1 pathway and alters methylation pat-terns on the SF-1 gene promoter. Toxicol. Lett. 356, 11-20.
Zhang W.F., Tian M., Song J.S., Chen F., Lin G., Zhang S.H. and Guan W.T. (2021). Effect of replacing inorganic trace miner-als at lower organic levels on growth performance, blood pa-
rameters, antioxidant status, immune indexes, and fecal mineral excretion in weaned piglets. Trop. Anim. Health. Prod. 53, 1-8.
Zhou B., Wang H., Luo G., Niu R. and Wang J. (2013). Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol. Trace Elem. Res. 155, 221-227.
Zhou Q., Xue S., Zhang L. and Chen G. (2022). Trace elements and the thyroid. Front. Endocrinol. 13, 904889-904895.
Zimmermann M.B. (2006). The influence of iron status on iodine utilization and thyroid function. Annu. Rev. Nutr. 26, 367-389.
Zonturlu A.K., Kacar C., Sönmez M., Yuce A. and Kaya S. (2017). The effect of injectable vitamin E and trace minerals (selenium, calcium, phosphate, copper, and cobalt) on repro-ductive performance during non-breeding season in Awassi ewes. Agric. Biol. 52, 331-337.