Drought Stress in Rice: Effects and Management Options
الموضوعات : Research On Crop EcophysiologyJaber Mehdiniya Afra 1 , نفیسه جلالی 2 , الهه رضایی 3
1 - Ph.D. student of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2 - phd student of Agroecology Department of Agrotechnology, Agriculture Ferdowsi University of Mashhad Mashhad Iran
3 - کارشناسی ارشد مهندسی کشاورزی گرایش بیوتکنولوژی، گروه بیوتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
الکلمات المفتاحية: Keywords: Rice, Oxidative stress, Strategies, Germination,
ملخص المقالة :
ABSTRACT Drought stress is one of the major challenges in agriculture, particularly in rice production, and has significant negative impacts on the growth and yield of this crop. Rice, as a staple food in many countries worldwide, is highly affected by water scarcity and climate change. Drought stress induces oxidative stress and disrupts the physiological processes of the plant, ultimately leading to reduced yield and product quality. The physiological and biochemical adaptations of plants to cope with this stress include alterations in growth patterns, hormonal regulation, and the production of secondary metabolites. Furthermore, management strategies such as selecting drought-resistant varieties and improving irrigation methods are proposed to mitigate the negative effects of drought stress on rice. This study aims to develop effective strategies for water resource management and enhance rice production under drought stress conditions. The article reviews the effects of drought stress on seed germination, root growth, photosynthesis, and dry matter production in rice. Keywords: Rice, Oxidative stress, Strategies, Germination
REFERENCES
Abubakar B., Yakasal H.M., Zawaal, N. & Ismail, M. 2018. Compositional analysis of white, brown and germinated forms of popular Malaysian rice to offer in sight in to the growing diet-related diseases. Journal of Food Drug Analysis. 26: 706-715.
Ali B. 2020. Nanomaterials and their role in plant stress tolerance under drought conditions. Environmental Pollution, 258, 113694. https://doi.org/10.1016/j.envpol.2019.113694.
Ali B., Fatima E., Javed M. A., Suleman F., Hafeez A., Ali, S., Khan M. N. 2024. Biochar-facilitated soil microbial diversity under contaminated soil. In Biochar-assisted Remediation of Contaminated Soils Under Changing Climate (pp. 143-165). Elsevier.
Bao Y., Xu Z., Wang X. 2017. Genetic improvement of drought tolerance in rice. International Journal of Plant Breeding and Genetics, 11(2), 65-74.
Bhatia V.2020. Water-efficient rice cultivation techniques: A review of irrigation strategies for drought stress mitigation. Field Crops Research, 251, 107753. https://doi.org/10.1016/j.fcr.2020.107753.
Blum, A. 2011. Plant Breeding for Water-Limited Environments. Springer Science & Business Media. ISBN: 978-1-4419-7491-4.
Bouman B. A. M. 2007. Water management in rice production under drought conditions. Agricultural Water Management, 87(3), 301-313.
Bouman B. A. Humphreys E., Tuong T. P., Barker R. 2007. Rice and water. Advances in Agronomy, 92, 187-237.
Cao M., Wang W., Zhang, X. 2017. Effects of drought stress on physiological and biochemical processes of rice. Field Crops Research, 213, 88-96.
Chaves, M. M. 2011. Physiological and molecular responses of plants to drought stress. Functional Plant Biology, 38(2), 92-107. https://doi.org/10.1071/FP10123.
Chaves M. M., Flexas J., Pinheiro C. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560.
Cong PT., Dung TD., Hien NT., Choudhury AT., Rose MT., Kecskes ML., and Kennedy, IR. 2011. Effects of a multistrain biofertilizer and phosphorus rates on nutrition and grain yield of paddy rice on a sandy soil in Southern Vietnam. Journal of plant nutrition 34:(7), 1058-1069. doi.org/10.1080/01904167.2011.555587.
Fathi A. 2022. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: a. Agrisost, 28, 1-8.
Fathi A., Afra J. M. 2023. Plant Growth and Development in Relation to Phosphorus: A review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 80(1), 1-7.
Fathi, A., Shiade, S. R. G., Ait-El-Mokhtar, M., & Rajput, V. D. 2024a. Crop Photosynthesis under Climate Change. In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi A., Shiade S. R. G., Ali B., Zeidali, E. 2024b. Plant Growth, Development, and Photosynthesis in Cereals under Salt Stress. In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi A., Shiade S. R. G., Kianersi F., Altaf M. A., Amiri E., Nabati E. 2024c. Photosynthesis in Cereals under Drought Stress. In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi A., Shiade S. R. G., Parmoon G., Yaghoubian Y., Pirdashti H., Rajput V. D., Minkina T. 2024e. Bioremediation of heavy metals contaminated soils using nanotechnology. In Bio-organic Amendments for Heavy Metal Remediation (pp. 611-628). Elsevier.
Fathi A., Shiade S. R. G., Zahra N., Farooq M. 2024d. Photosynthesis in Plants under Cold Stress. In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Flexas J., Bota J., Galmés J., Medrano H., Ribas-Carbó M. 2006. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127(3), 343-352.
Ghadirnezhad Shiade S. R., Fathi A., Kardoni F., Pandey R., Pessarakli M. 2024b. Nitrogen contribution in plants: recent agronomic approaches to improve nitrogen use efficiency. Journal of Plant Nutrition, 47(2), 314-331.
Ghadirnezhad Shiade S. R., Fathi A., Minkina T., Wong M. H., Rajput V. D. 2024c. Biochar application in agroecosystems: a review of potential benefits and limitations. Environment, Development and Sustainability, 26(8), 19231-19255.
Ghadirnezhad Shiade S. R., Fathi A., Taghavi Ghasemkheili F., Amiri E., Pessarakli M. 2023. Plants’ responses under drought stress conditions: Effects of strategic management approaches—A review. Journal of plant Nutrition, 46(9), 2198-2230.
Ghadirnezhad Shiade S. R., Rahimi R., Zand-Silakhoor A., Fathi A., Fazeli A., Radicetti E., Mancinelli R. 2024a. Enhancing Seed Germination Under Abiotic Stress: Exploring the Potential of Nano-Fertilization. Journal of Soil Science and Plant Nutrition, 1-23.
Gharechahi J., Sharifi G., Mirzaei M., Zeinalabedini M. and Salekdeh G. H. 2019. Abiotic stress responsive microRNome and proteome: How correlated are they?. Environmental and Experimental Botany, 165: 150-160.
Hafeez A., Ali B., Javed M. A., Saleem A., Fatima M., Fathi A., Soudy F. A. 2023. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics assisted breeding. Planta, 258(5), 97.
Henry A., Cal A. J., Batoto T. C. 2011. Root attributes affecting water uptake of rice (Oryza sativa) under drought. Field Crops Research, 122(3), 144-154.
Huang M., Zhang H., Wang F., Xu Z., Zhang Y. 2014. The impact of drought stress on root and shoot development in rice. Journal of Integrative Plant Biology, 56(3), 123-130.
Huang X., Zhang Y., Zhu Z. 2007. Regulation of oxidative stress in rice: Insights into plant responses. Journal of Plant Biology, 50(3), 345-355. https://doi.org/10.1007/s12374-007-0585-x.
Janeeshma E., Habeeb H., Shackira A. M., Sinisha A. K., Mirshad P. P., Khoshru B., Mitra D. 2024. Strigolactone and analogues: a new generation of plant hormones with multifactorial benefits in environmental sustainability. Environmental and Experimental Botany, 105775.
Kato Y., Kamoshita A., Yamagishi J. 2008. Growth of rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply: Biomass production, dry matter partitioning and leaf water potential. Plant Production Science, 11(2), 166-175.
Khush G. S. 2005. Drought resistance in rice. Field Crops Research, 85(2-3), 111-120.
Kumar S. 2018. Role of mulching in mitigating drought stress in rice. Agricultural Systems, 165, 104-114. https://doi.org/10.1016/j.agsy.2018.06.007.
Lawlor D. W., Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294.
Lesk C., Rowhani P., Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529 84–87. 10.1038/nature16467.
Li J., Chen Y., Li Y. 2024. Genetic Mechanisms of Oxidative Stress Resistance in Rice. Journal of Experimental Botany, 75(3), 1021-1035. https://doi.org/10.1093/jxb/erz475.
Liu J., Jiang W., Huang Z. 2015. Physiological responses of rice to oxidative stress. Acta Physiologiae Plantarum, 37(8), 177. https://doi.org/10.1007/s11738-015-1890-2
Liu, Z. 2019. Controlled irrigation techniques for drought management in rice crops. Agricultural Systems, 172, 82-92. https://doi.org/10.1016/j.agsy.2019.02.004.
Manavalan L. P. 2009. Genetic approaches to improve drought tolerance in rice. Rice Science, 16(1), 1-12. https://doi.org/10.1016/S1672-6308(09)60001-7.
Mehdiniya Afra J., Niknejad Y., Falah Amoli H., Barari Tari D.2020a. Effects of Drought Stress on Some Phytochemical Characteristics of Rice cultivars under Different Chemical and organic Nutritional Sources. Journal of Plant Nutrition & Taylor & Francis journals. Print ISSN: 0190-4167 Online ISSN: 1532-4087.2020.
Mehdiniya Afra J, Niknejad Y., Falah Amoli H., Barari Tari D.2021. The effect of different sources of chemical and organic fertilizers on some physiological components of different rice cultivars Under drought stress conditions. Scientific Journal of Crop Physiology, Islamic Azad University, Ahvaz Branch. Print ISSN: 403-2008X Online ISSN: 6949-2676. No. 45, Spring 2020, pp. 25-44.
Mehdiniya Afra J., NiknejadY., Falah Amoli H., Barari Tari D.2019. Evaluation of chemical and organic nutrition systems on performance and water use efficiency Under conditions of low irrigation stress, rice cultivars. Journal of Crop Science. Islamic Azad University, Shushtar Branch. Ninth Volume, Number Two, Fall 2019.
Mehdiniya Afr J., Niknejad Y., Falah Amoli H., Barari Tari D.2020b. Effect of various nutritional resources on phytochemical traits of some rice varieties under drought stress conditions. Bulletin of the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture. Print ISSN: 1843-5246 Online ISSN: 1843-5386.2021.
Mehdiniya Afra J., mozafar M.2017. The Effect of Phosphorus and Zinc Fertilizer on the Elements Concentration of Soybean Cultivars Seed (Glycine max L.). Bulletin of Environment, Pharmacology and Life Sciences.vol.(6):41-48.
Mehdiniya Afra J., Gholizadeh A.L., Mahmoudi M. Mobasser H.R. 2014.Response of two soybean cultivars to phosphorus and zinc interactions. Soil management and sustainable production Journal, Gorgan University of Agricultural Sciences and Natural Resources. 2014 , Volume 4 , Number 1; Page(s) 89 To 108.
Miftahudin, M., Putri, R.E. and Chikmawati, T. 2020. Vegetative morphophysiological responses of four rice cultivars to drought stress. Biodiversitas Journal of Biological Diversity, 21(8). https://doi.org/10.13057/biodiv/d210840.
Mirzaei Heydari M., Fathi A., Atashpikar R. 2024. The effect of chemical and biofertilizer on the nutrient concentration of root, shoot and seed of bean (Phaseolus vulgaris L.) under drought stress. Crop Science Research in Arid Regions, 5(3), 539-554.
Ndjiondjop M. N., Cisse F., Futakuchi K., Lorieux M., Manneh B., Bocco R. Fatondji B. 2010. Effect of drought on rice (Oryza spp.) genotypes according to their drought tolerance level. Innovation and Partnerships to Realize Africa’s Rice Potential, Second Africa Rice Congress, Bamako, Mali, 22-26.
Pandey R. 2017. Water-saving irrigation techniques for rice cultivation under drought stress. Agronomy Journal, 109(6), 2745-2755. https://doi.org/10.2134/agronj2017.03.0162.
Pandey S., Shukla A. 2015. Drought stress responses and adaptations in plants: A root perspective. Advances in Agronomy, 134, 237-272.
Pantuwan G., Fukai S., Cooper M., Rajatasereekul S., O'Toole J. C. 2002. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: Selection of drought resistant genotypes. Field Crops Research, 73(3), 169-180.
Pardo J. M., Rubio F. 2011. The role of hormones in plant responses to water stress. Plant Growth Regulation, 63, 199-207.
Rajput P., Kumar P., Priya A. K., Kumari S., Shiade S. R. G., Rajput V. D., Rensing, C. 2024. Nanomaterials and biochar mediated remediation of emerging contaminants. Science of The Total Environment, 170064.
Rao G. K. 2007. Nutrient management for improving rice productivity under water stress conditions. Field Crops Research, 102(2-3), 145-157.
Rao N. S. 2017. Drought resistance mechanisms in rice: Current progress and future directions. International Journal of Plant Breeding and Genetics, 11(4), 124-137.
Sah, S. K., Ranjan, A., & Lee, S. Y. 2016. Role of auxins in response to drought stress in plants. Frontiers in Plant Science, 7, 1-10.
Santos-Medellín C., Liechty Z., Edwards J., Nguyen B., Huang B., Weimer B.C. Sundaresan V. 2021. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nature Plants, 7(8), pp.1065-1077. https://doi.org/10.1038/s41477-021-00967-1.
Shao, H.B., L.Y. Chu, M.A. Shao, C. Abdul Jaleel and M. Hong-Mei. 2008. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331: 433–441 doi.org/10.1016/j.crvi.2008.03.011
Sharma, P. 2017. Impact of plant growth regulators on the drought tolerance of rice. International Journal of Agricultural Science and Research, 8(2), 45-53.
Sharma P.2016. Efficient water management for rice production under drought stress. Agricultural Water Management, 167, 64-72. https://doi.org/10.1016/j.agwat.2015.12.003.
Shen Q., Zhou X., Liu J. 2016. Epigenetic modulation of ROS genes in rice under stress. Journal of Experimental Botany, 67(10), 2891-2903. https://doi.org/10.1093/jxb/erw046
Shiade S. R. G., Fathi A., Rahimi R. 2025. Nano-and Nano-Biochar in Reducing Soil Stress: An Integrated Approach for Sustainable Agriculture. In Nanomaterials and Nano-Biochar in Reducing Soil Stress (pp. 93-113). Apple Academic Press.
Shiade S. R. G., Fathi A., Rahimi R., DahPahlavan S. 2024a. Crop Adaptation to Climate Change: Improvements in Photosynthesis. In Handbook of Photosynthesis (pp. 676-684). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Shiade S. R. G., Zand-Silakhoor A., Fathi A., Rahimi R., Minkina T., Rajput V. D., Chaudhary T. 2024b. Plant metabolites and signaling pathways in response to biotic and abiotic stresses: Exploring bio stimulant applications. Plant Stress, 100454.
Singh K. A. 2003. Enhancing rice productivity in water stressed environments. IRRI Publications. DOI: 10.1142/9789814280013_0013.
Taghavi Ghasemkheili F., Ekelund F., Johansen J. L., Pirdashti H., Ghadirnezhad Shiade S. R., Fathi A., Kjøller R. 2022. Ameliorative effects of trichoderma harzianum and rhizosphere soil microbes on cadmium biosorption of barley (Hordeum vulgare l.) in cd-polluted soil. Journal of Soil Science and Plant Nutrition, 1-13.
Tao H., Brueck H., Dittert K., Kreye C., Lin S. and Sattelmacher B. 2006. Growth and yieldformation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research 95: 1–12.
Tuyen D. D. Prasad D. T. 2008. Evaluating difference of yield trait among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers, Omonrice, 16: 24-33.
Uga Y., Okuno K., Yano M. 2013. DRO1, a major QTL involved in deep rooting of rice under drought conditions. Functional Plant Biology, 40(1), 18-27.
Wang X. 2016. Use of mulch to reduce drought stress in rice. Rice Science, 23(4), 278-286.
Wu N., Guan Y., Y. Shi. 2011. Effect of water stress on physiological traits and yield in rice backcross lines after anthesis. Energy Procedia 5: 255–260. doi.org/10.1016/j.egypro.2011.03.045.
Xiong J., Sun Z., Zhang Q., Wang M. 2024. Strigolactone Alleviates NaCl Stress by Regulating Antioxidant Capacity and Hormone Levels in Rice (Oryza sativa L.) Seedlings. Agriculture, 14(9), 1662. https://doi.org/10.3390/agriculture14091662
Yadav S. S. 2018. Role of plant growth regulators in alleviating drought stress in rice. Journal of Plant Nutrition, 41(5), 581-590. https://doi.org/10.1080/01904167.2017.1341085.
Yamaguchi-Shinozaki K., Shinozaki K. 2006. Transcriptional regulatory networks in response to abiotic stresses in plants. Current Opinion in Plant Biology, 9(5), 417-423.
Yang J. C., Liu K., Zhang S. F., Wang X. M., Wang Z. Q. and Liu L. J. 2008. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agronomica Sinica 34: 111–118.
Yang W., Kong Z., Omo-Ikerodah E., Xu W., Li Q., Xue Y. 2008. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). Journal of Genetics and Genomics, 35(9), 531-S2.
Zhang H., Zhu L. 2012. Antioxidant mechanisms in rice development under abiotic stress. Environmental and Experimental Botany, 77, 191-201. https://doi.org/10.1016/j.envexpbot.2011.11.002
Zhang J., Jia W., Yang J., Ismail, A. M. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97(1), 111-119.
Zhang L., Zhang X., Liu Y. 2015. The role of cytokinins in drought tolerance. Plant Growth Regulation, 77(1), 13-22.
Zhang X. 2024. Role of Antioxidant Enzymes in Rice’s Response to Drought and Salt Stress. Journal of Plant Physiology, 208, 12-25. https://doi.org/10.1016/j.jplph.2024.04.008
Zhou S., Zhang B., Wang X. 2018. Antioxidant defenses in rice: A comprehensive review. Rice Science, 25(5), 232-248. https://doi.org/10.1016/j.rsci.2018.06.003
Zhou S., Zhang B., Wang X. 2018. Effects of irrigation management on drought tolerance in rice. Agricultural Water Management, 211, 66-75. https://doi.org/10.1016/j.agwat.2018.09.022.
Zhu L., Zhang H., Liu S. 2024. Oxidative Stress in Rice under Abiotic Stresses: A Review. Frontiers in Plant Science, 15, 237. https://doi.org/10.3389/fpls.2024.00237.