راهکاری نوین برای صرفهجویی در آب و افزایش تولید برنج: مهندسی ژنتیک با ژنهای OsNAC5 و EPSPS
الموضوعات :سید محمد موسوی پاکزاد 1 , الهه معتمد 2 , نسرین سلطانی 3 , محدثه محسن پور 4 , علی اکبر عبادی 5 , مطهره محسن پور 6
1 - بخش مهندسي ژنتيک و ايمني زيستي، پژوهشگاه بیوتکنولوژي کشاورزي (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزي، کرج، ایران
2 - 1- بخش مهندسي ژنتيک و ايمني زيستي، پژوهشگاه بیوتکنولوژي کشاورزي (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزي، کرج، ایران
3 - بخش مهندسي ژنتيک و ايمني زيستي، پژوهشگاه بیوتکنولوژي کشاورزي (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزي، کرج، ایران
4 -
5 - موسسه تحقيقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزي، کرج، ایران
6 - پژوهشکده بیوتکنولوژی کشاورزی کرج
الکلمات المفتاحية: واژههاي کلیدی: مهندسي ژنتيک برنج, EPSPS, 5 OsNAC, انتقال ترکيبي ژنها, کاهش مصرف آب,
ملخص المقالة :
سابقه و هدف: استفاده از روشهای علمی برای حل مشکلات مرتبط با علفهای هرز در کشت برنج میتواند روشهای زراعی را متحول کند، به طوری که نیاز به غرقابی و سیستمهای کرتبندی حذف شود و هزینههای تولید به طور قابل توجهی کاهش یابد. این مطالعه بر استفاده از فناوریهای پیشرفته تمرکز دارد که با ترکیب ژنهای تحمل به علفکش و ژنهایی که تحمل به خشکی یا افزایش عملکرد را فراهم میکنند، انجام میشود. مواد و روشها: برای دستیابی به این هدف، یک سازه ژنی چندگانه طراحی شد که ژن تحمل به علفکش را در کنار ژن 5OsNAC، مرتبط با تحمل به خشکی، بهبود عملکرد و تغییر ساختار ریشه، در بر داشت. توالی کدکننده ژن 5 OsNAC بهینهسازی کدونی شده و تحت کنترل پیشبر3RCc و پایانبر 17tahsp قرار گرفت و همراه با کاست ژنی EPSPS در ناحیه T-DNA یک وکتور مبتنی بر Agrobacterium همسانهسازی شد. سازه ژنی حاصل با استفاده از Agrobacterium tumefaciens به برنج منتقل شد و مراحل انتخاب و باززایی بهطور مستمر انجام گرفت. يافتهها: آنالیز واکنش زنجیرهای پلیمراز (PCR) با استفاده از آغازگرهای مختص ژن و سازه، حضور تراژنها را در گیاهان باززاییشده در محیط انتخابی تأیید کرد. از این فرآیند، شش رخداد مستقل از انتقال سازه نوترکیب موسوم به 5pUhErN به دست آمد. این رخدادها با استفاده از واکنش PCR معکوس برای تفکیک رخدادهای مستقل و تعیین محل الحاق تراژن در گیاهان مورد تجزیه و تحلیل قرار گرفتند. نتيجهگيري: توسعه برنج با قابليت مصرف کمتر آب گامی مهم در جهت مواجهه با محدودیتهای اقلیمی و منابع کشور است و نقشی کلیدی در حفظ امنیت غذایی و دستیابی به خودکفایی دارد. استفاده از این فناوریها میتواند به پایداری تولید برنج در ایران کمک کرده و آن را در برابر چالشهای محیطی مقاومتر سازد.
Dehghannezhad H, Zaefarian F, Abbasi R, Nouralizadeh Otaghsara M. weed management methods in direct-seeded rice (Oryza sativa L.). J Crop Prod [Internet]. 2023;16(4):21–40. Available from: https://ejcp.gau.ac.ir/article_6784.html
2. Bayer DE, Hill JE, Seaman DE. Rice (Oryza sativa). In: Principles of Weed Control in California Fresno, CA: California Weed Conf. 1985. p. 262–8.
3. Monaco TJ, Weller SC, Ashton FM. Weed science: principles and practices. John Wiley & Sons; 2002.
4. Sahrawat KL. Soil fertility in flooded and non-flooded irrigated rice systems. Arch Agron Soil Sci. 2012;58(4):423–36.
5. Wu W, Cheng S. Root genetic research, an opportunity and challenge to rice improvement. F Crop Res. 2014;165:111–24.
6. Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. 2013;10:101–14.
7. Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J. 2012;10(7):792–805.
8. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics. 2010;284(3):173–83.
9. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, et al. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta. 2009;230(5):985–1002.
10. Song S-Y, Chen Y, Chen J, Dai X-Y, Zhang W-H. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta. 2011;234(2):331–45.
11. Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, et al. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep. 2014;4:5563.
12. Rogers ED, Benfey PN. Regulation of plant root system architecture: Implications for crop advancement. Curr Opin Biotechnol [Internet]. 2015;32(Figure 1):93–8. Available from: http://dx.doi.org/10.1016/j.copbio.2014.11.015
13. Zhang T-Q, Chen Y, Liu Y, Lin W-H, Wang J-W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun. 2021;12(1):1–12.
14. Kawai T, Shibata K, Akahoshi R, Nishiuchi S, Takahashi H, Nakazono M, et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc Natl Acad Sci. 2022;119(1):e2101846119.
15. Zandi M, Hosseini R, Mohsenpour M, HOSSEINI SG, Ghareyazie B. Transformation of DRO1, OsNAC5, OsEXPA8 genes in order to improve rice root architecture modification and improved drought tolerance in rice. 2019;
16. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold spring harbor laboratory press; 1989.
17. An G, Watson BD, Chiang CC. Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol. 1986;81(1):301–5.
18. Chamani Mohasses F, Mousavi Pakzad SM, Moatamed E, Entesari M, Bidadi H, Molaahmad Nalousi A, et al. Efficient genetic transformation of rice using Agrobacterium with a codon-optimized chromoprotein reporter gene (ChromoP) and introducing an optimized iPCR method for transgene integration site detection. Plant Cell, Tissue Organ Cult. 2024;156(1):5.
19. Chamani Mohasses F, Solouki M, Ghareyazie B, Fahmideh L, Mohsenpour M. Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. PLoS One. 2020;15(8):e0237334.
20. Mohammadizadeh N, Tohidfar M, Mohsenpour M. Agrobacterium-Mediated Transformation of Wheat (Triticum Aestivum) Using Chitinase and Glucanase Genes. 2010;
21. Raufi A, Tohidfar M, Soluki M, Mohsenpour M. Isolation and Cloning of Two Genes from PR1 Family and Construction of Treble Plasmids Containing 3 Groups of Genes for Producing Transformed Plants Resistant to Fungal Diseases. J Agric Biotechnol. 2012;3(2):27–46.
22. Mohsenpour M, Tohidfar M, Jelodar NB, Jouzani GS. Designing a new marker-free and tissue-specific platform for molecular farming applications. J Plant Biochem Biotechnol. 2015;24(4).
23. Mohkami A, Marashi H, Shahriary Ahmadi F, Tohidfar M, Mohsenpour M. Evaluation of Agrobacterium-mediated Transformation of Chlamydomonas reinhardtii using a Synthetic amorpha-4, 11-diene Synthase Gene. J Cell Mol Res. 2015;7(1):53–8.
24. Mohsenpour M, Tohidfar M. Genetic Engineering of Plant Nuclear Genome for Specific gene Expression in Chloroplast Using Design and Transformation of Hybrid Sigma Factor. Crop Biotechnol. 2011;
25. Saboori-Robat E, Solouki M, Habashi AA, Moshenpour M, Emamjomeh A. Design and construction of two-genes construct consists of 11 kDa delta zein and EPSPS genes in order to transform soybean to improve the methionine content and induce resistance to glyphosate herbicide. Crop Biotechnol. 2019;9(27):69–77.
26. Ghareyazie B, Alinia F, Menguito CA, Rubia LG, De Palma JM, Liwanag EA, et al. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol Breed. 1997;3(5):401–14.
27. Bennett J, Cohen MB, Katiyar SK, Ghareyazie B, Khush GS. Enhancing insect resistance in rice through biotechnology. Adv insect Control role transgenic plants. 1997;75–93.
28. Kazemi M, Ghorbanzadeh Z, Pourhang L, Mousavi pakzad SM, Moatamed E, Mapar M, et al. Rice genetic engineering using transformation of Deeper Rooting1 and Phosphorus-Starvation Tolerance1 genes. Agric Biotechnol J [Internet]. 2022;14(1):1–20. Available from: https://jab.uk.ac.ir/article_3211.html
29. Ghorbanzadeh Z, Kazemi Alamouti M, Pourhang L, Mousavi Pakzad SM, Moatamed E, Mapar M, et al. Identificatioan and investigation of DRO1 gene in rice cultivar Hashemi and its simultaneous transfer with OsCKX4 gene to improve root structure. Crop Biotechnol [Internet]. 2022;11(36):49–62. Available from: https://cropbiotech.journals.pnu.ac.ir/article_8590.html
30. Pourhang L, Ghorbanzadeh Z, Kazemi Alamuti M, Mousavi Pakzad SM, Moatamed E, Mapar M, et al. Multi-gene transformation evaluation of a serine/threonine protein kinase with a gene from the cytokinin oxidase/dehydrogenase family and a transcription factor induced under stress from the NAM-ATAF-CUC family to rice. Modares J Biotechnol. :0.
31. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science (80- ). 2000;287(5451):303–5.
32. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci. 2003;100(8):4939–44.
33. Mohsenpour M, Kahak S, Ghareyazie B. Genetic Engineering and Food Security. Strateg Res J Agric Sci Nat Resour [Internet]. 2018;3(2):195–208. Available from: http://srj.asnr.ias.ac.ir/article_112926.html
34. https://agrilib.areeo.ac.ir/book_11874.html