طراحی فوتوکاتالیستهای چندمنظوره با g-C₃N₄ و کاربردهای آن در فناوریهای پایدار
الموضوعات :زهرا محمدپور کوسه لر 1 , زهره قاضی طباطبایی 2
1 - دانشجوی کارشناسی ارشد، گروه شیمی، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران
2 - استادیار گروه شیمی، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران
الکلمات المفتاحية: نیترید کربن گرافیتی, فوتوکاتالیست ناهمگن, فناوریهای پایدار, طراحی فوتوکاتالیست ,
ملخص المقالة :
فوتوکاتالیستهای ناهمگن در تبدیل و ذخیره انرژی، در سوختهای خورشیدی پایدار و سبز و همچنین در بسیاری از حوزههای زیستمحیطی بهعنوان یک فناوری نوین بهکار میروند. فوتوکاتالیستهای نیترید کربن گرافیتی (g-C3N4) به دلیل ویژگیهای فیزیکوشیمیایی، نوری و الکتریکی منحصر به فرد خود، طیف خاصی از فوتوکاتالیستهای ناهمگن را تشکیل میدهند. در این مطالعه، مکانیسمهای اصلی این فوتوکاتالیستها، مزایا، چالشها و طراحی فوتوکاتالیستهای مبتنی بر g-C3N4 مورد بررسی قرار گرفت. همچنین، خواص ساختاری، ویژگیهای فیزیکوشیمیایی سطح، پایداری سطح، همچنین خواص الکتروشیمیایی، فوتوالکتروشیمیایی و نوری آنها به تفصیل بررسی شد. همچنین، کاربردهای مهمی نظیر تخریب آلایندهها، کاهش دیاکسید کربن، برخی تبدیلات آلی و گندزدایی نیز مورد توجه قرار گرفت. با توجه به پیشرفتهای برجسته این حوزه، انتظار میرود که فرصتهای جدیدی برای طراحی و ساخت فوتوکاتالیستهای موثر مبتنی بر g-C3N4 برای کاربردهای مختلف فراهم شود.
[1] Fujishima, A, Honda, K., 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37.
[2] Bard, A.J., 1979, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors, Journal of Photochemistry, 10, 59.
[3] Kato, H., Hori, M., Konta, R., Shimodaira, Y., Kudo, A., 2004, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation, Chemistry Letters, 33, 1348.
[4] Wang, C.-C., Li, J.-R., Lv, X.-L., Zhang, Y.-Q., Guo, G., 2014, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy & Environmental Science, 7, 2831.
[5] Li, X., Wen, J., Low, J., Fang, Y., Yu, J., 2014, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Science China Materials, 57, 70.
[6] Lang, X., Chen, X., Zhao, J., 2014, Heterogeneous visible light photocatalysis for selective organic transformations, Chemical Society Reviews, 43, 473.
[7] Masih, D., Ma, Y,. Rohani, S., 2017, Graphitic C3N4 based noble-metal-free photocatalyst systems: A review, Applied Catalysis B: Environmental, 206, 556.
[8] Patnaik, S., Sahoo, D.P., Parida, K., 2018, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications, Renewable and Sustainable Energy Reviews, 82, 1297.
[9] Ran, J., Gao, G., Li, F.-T., Ma, T.-Y., Du, A., Qiao, S.-Z., 2017, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nature Communications, 8, 13907.
[10] Kumar, S., Karthikeyan, S., Lee, A.F., 2018, g-C3N4-based nanomaterials for visible light-driven photocatalysis, Catalysts, 8, 74.
[11] Chen, F., Yang, H., Wang, X., Yu, H., 2017, Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts, Chinese Journal of Catalysis, 38, 296.
[12] Cao, S., Huang, Q., Zhu, B., Yu, J., 2017, Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production, Journal of Power Sources, 351, 151.
[13] Gomari, K.A., Hafeez, H.Y., Mohammed, J., Dankawu, U.M., Ndikilar, C.E., Suleiman, A.B., 2024, A recent development and future prospect of g–C3N4–based photocatalyst for stable hydrogen (H2) generation via photocatalytic water-splitting, International Journal of Hydrogen Energy, 85, 598.
[14] Hao, P., Chen, Z., Yan, Y., Shi, W., Guo, F., 2024, Recent advances, application and prospect in g-C3N4-based S-scheme heterojunction photocatalysts, Separation and Purification Technology, 330, 125302.
[15] Li, Y., Zhou, M., Cheng, B., Shao, Y., 2020, Recent advances in g-C3N4-based heterojunction photocatalysts, Journal of Materials Science & Technology, 56, 1.
[16] Yang, X., Ye, Y., Sun, J., Li, Z., Ping, J., Sun, X., 2022, Recent advances in g-C3N4‐based photocatalysts for pollutant degradation and bacterial disinfection: Design strategies, mechanisms, and applications, Small, 18, 2105089.
[17] Xing, J., Wang, N., Li, X., Wang, J., Taiwaikuli, M., Huang, X., Wang, T., Zhou, L. Hao, H., 2022, Synthesis and modifications of g-C3N4-based materials and their applications in wastewater pollutants removal, Journal of Environmental Chemical Engineering, 10, 108782.
[18] Sohail, M., Anwar, U., Taha, T.A., Qazi, H.I.A., Al-Sehemi, A.G., Ullah, S., Algarni, H., Ahmed, I.M., Amin, M.A., Palamanit, A. Iqbal, W., Alharthi, S., Nawawi, W.I., Ajmal, Z., Ali, H., Hayat, A., 2022, Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review, Arabian Journal of Chemistry, 15, 104070.
[19] Yan, Y., Meng, Q., Tian, L., Cai, Y., Zhang, Y. Chen, Y., 2024, Engineering of g-C3N4 for photocatalytic hydrogen production: A review, International Journal of Molecular Sciences, 25, 8842.
[20] Ismael, M., 2020, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis, Journal of Alloys and Compounds, 846, 156446.
[21] He, F., Wang, Z., Li, Y., Peng, S., Liu, B., 2020, The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts, Applied Catalysis B: Environmental, 269, 118828.
[22] Hayat, A., Sohail, M., El Jery, A., Al‐Zaydi, K.M., Alshammari, K.F., Khan, J., Ali, H., Ajmal, Z., Taha, T.A., Ud Din, I., Altamimi, R., Hussein, M.A., Al-Hadeethi, Y., Orooji, Y., Ansari, M.Z., 2023, Different dimensionalities, morphological advancements and engineering of g-C3N4‐based nanomaterials for energy conversion and storage, The Chemical Record, 23, e202200171.
[23] Song, B., Zeng, Z., Zeng, G., Gong, J., Xiao, R., Ye, S., Chen, M., Lai, C., Xu, P., Tang, X., 2019, Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications, Advances in Colloid and Interface Science, 272, 101999.
[24] Wudil, Y.S., Ahmad, U.F., Gondal, M.A., Al-Osta, M.A., Almohammedi, A., Sa'id, R.S., Hrahsheh, F., Haruna, K., Mohamed, M.J.S., 2023, Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: A critical review, Arabian Journal of Chemistry, 16, 104542.
[25] Wang, J., Wang, S., 2022, A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application, Coordination Chemistry Reviews, 453, 214338.
[26] Li, Y., Gu, M., Zhang, X., Fan, J., Lv, K., Carabineiro, S.A.C., Dong, F., 2020, 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges, Materials Today, 41, 270.
[27] Huang, H., Jiang, L., Yang, J., Zhou, S., Yuan, X., Liang, J., Wang, H., Wang, H., Bu, Y., Li, H., 2023, Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications, Renewable and Sustainable Energy Reviews, 173, 113110.
[28] Khan, M.A., Mutahir, S., Shaheen, I., Qunhui, Y., Bououdina, M., Humayun, M., 2025, Recent advances over the doped g-C3N4 in photocatalysis: A review, Coordination Chemistry Reviews, 522, 216227.
[29] Gorai, D.K., Kuila, S.K., Kumar, A., Ahmad, M.I., Kundu, T.K., 2023, Insight into the effect of Li/P co-doping on the electronic structure and photocatalytic performance of g-C3N4 by the first principle, Applied Surface Science, 623, 157031.
[30] Liu, X., Kang, W., Zeng, W., Zhang, Y., Qi, L., Ling, F., Fang, L., Chen, Q., Zhou, M., 2020, Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles hybrid functional investigation, Applied Surface Science, 499, 143994.
[31] Liu, J., Cheng, B., 2018, New understanding of photocatalytic properties of zigzag and armchair g-C3N4 nanotubes from electronic structures and carrier effective mass, Applied Surface Science, 430, 348.
[32] Xu, Q., Ma, D., Yang, S., Tian, Z., Cheng, B., Fan, J., 2019, Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation, Applied Surface Science, 495,143555.
[33] Li, Y., Yang, M., Xing, Y., Liu, X., Yang, Y., Wang, X., Song, S., 2017, Preparation of carbon‐rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production, Small, 13, 1701552.
[34] Bandyopadhyay, A., Ghosh, D., Kaley, N.M., Pati, S.K., 2017, Photocatalytic activity of g-C3N4 quantum dots in visible light: Effect of physicochemical modifications, The Journal of Physical Chemistry C, 121, 1982.
[35] Dong, S., Cai, W., Sheng, L., Wang, W., Liu, H., Xia, J., 2020, Combined effect of physicochemical factors on the retention and transport of g-C3N4 in porous media, Chemosphere, 256, 127100.
[36] Dong, G., Zhang, Y., Pan, Q., Qiu, J., 2014, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 33.
[37] Pomilla, F.R., Cortes, M.A.L.R.M., Hamilton, J.W.J., Molinari, R., Barbieri, G., Marcì, G., Palmisano, L., Sharma, P.K., Brown, A., Byrne, J.A., 2018, An Investigation into the stability of graphitic C3N4 as a photocatalyst for CO2 reduction, The Journal of Physical Chemistry C, 122, 28727.
[38] Pawar, R.C., Kang, S., Park, J.H., Kim, J.-H., Ahn, S., Lee, C.S., 2016, Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability, Scientific Reports, 6, 31147.
[39] Cherkasov, N., Ibhadon, A.O., Fitzpatrick, P., 2015, A review of the existing and alternative methods for greener nitrogen fixation, Chemical Engineering and Processing: Process Intensification, 90, 24.
[40] Ling, G.Z.S., Ng, S.-F., Ong, W.-J., 2022, Tailor‐engineered 2D cocatalysts: harnessing electron–hole redox center of 2D g-C3N4 photocatalysts toward solar‐to‐chemical conversion and environmental purification, Advanced Functional Materials, 32, 2111875.
[41] Tahir, M., Cao, C., Mahmood, N., Butt, F.K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z., Aslam, I., 2014, Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Applied Materials & Interfaces, 6, 1258.
[42] Zhou, X., Zhao, C., Chen, J., Chen, L., 2021, Influence of B, Zn, and B-Zn doping on electronic structure and optical properties of g-C3N4 photocatalyst: A first-principles study, Results in Physics, 26, 104338.
[43] Zhang, H., Tang, Y., Liu, Z., Zhu, Z., Tang, X., Wang, Y., 2020, Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2, Chemical Physics Letters, 751, 137467.
[44] Li, J., Liu, Y., Li, H., Chen, C., 2016, Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance, Journal of Photochemistry and Photobiology A: Chemistry, 317, 151.
[45] Zhao, S., Chen, S., Yu, H., Quan, X., 2012, g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation, Separation and Purification Technology, 99, 50.
[46] Pan, Y., Zhang, Y., Li, Z., Yang, N., Deng, W., Fang, Z., Li, C., Long, Z., 2020, A selective cataluminescence sensor with a homemade gaseous sample introduction system for accurate and sensitive determination of H2S using catalytic g-C3N4@Fe, Microchemical Journal, 156, 104833.
[47] Ansari, S.A., Cho, M.H., 2017, Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications, Scientific Reports, 7, 43055.
[48] Bu, Y., Chen, Z., Li, W., 2014, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material, Applied Catalysis B: Environmental, 144, 622.
[49] Nguyen-Dinh, M.-T., Bui, T.S., Bansal, P., Jourshabani, M., Lee, B.K., 2021, Photocatalytic and photo-electrochemical behavior of novel SnO2-modified-g-C3N4 for complete elimination of tetracycline under visible-light irradiation: Slurry and fixed-bed approach, Separation and Purification Technology, 267, 118607.
[50] Yu, X., He, X., Zhang, X., Peng, Y., Zhao, P., Zhang, Z., Liu, Y., Zhang, L., Zhao, P., 2024, Effect of P and Ce co-doping on the photocatalytic performance of g-C3N4: Experimental and theoretical studies, Diamond and Related Materials, 143, 110906.
[51] Liu, E., Lin, X., Hong, Y., Yang, L., Luo, B., Shi, W., Shi, J., 2021, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution, Renewable Energy, 178, 757.
[52] Zou, H., Yan, X., Ren, J., Wu, X., Dai, Y., Sha, D., Pan, J., Liu, J., 2015, Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization, Journal of Materiomics, 1, 340.
[53] Tong, Z., Yang, D., Shi, J., Nan, Y., Sun, Y., Jiang, Z., 2015, Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance, ACS Applied Materials & Interfaces, 7, 25693.
[54] Mo, Z., Zhu, X., Jiang, Z., Song, Y., Liu, D., Li, H., Yang, X., She, Y., Lei, Y., Yuan, S., Li, H., Song, L., Yan, Q., Xu, H., 2019, Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Applied Catalysis B: Environmental, 256, 117854.
[55] Zhou, X., Jin, B., Chen, R., Peng, F., Fang, Y., 2013, Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts, Materials Research Bulletin, 48, 1447.
[56] Fattahimoghaddam, H., Mahvelati-Shamsabadi, T., Lee, B.-K., 2021, Efficient photodegradation of Rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: Supramolecular design, Journal of Hazardous Materials, 403, 123703.
[57] Chen, Y., Zhai, B., Liang, Y., Li, Y., Li, J., 2019, Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation, Journal of Solid State Chemistry, 274, 32.
[58] Balakrishnan, A., Chinthala, M., Polagani, R.K., Vo, D.-V.N., 2023, Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review, Environmental Research, 216, 114660.
[59] Yuan, Q., Li, L., Tang, Y., Zhang, X., 2020, A facile Pt-doped g-C3N4 photocatalytic biosensor for visual detection of superoxide dismutase in serum samples, Sensors and Actuators B: Chemical, 318, 128238.
[60] Çapar, N., Yola, B.B., Polat, İ., Bekerecioğlu, S., Atar, N., Yola, M.L., 2023, A zearalenone detection based on molecularly imprinted surface plasmon resonance sensor including sulfur-doped g-C3N4/Bi2S3 nanocomposite, Microchemical Journal, 193, 109141.
[61] Xiong, T., Cen, W., Zhang, Y., Dong, F., 2016, Bridging the g-C3N4 interlayers for enhanced photocatalysis, ACS Catalysis, 6, 2462.
[62] Niu, X., Yi, Y., Bai, X., Zhang, J., Zhou, Z., Chu, L., Yang, J., Li, X., 2019, Photocatalytic performance of few-layer graphitic C3N4: Enhanced by interlayer coupling, Nanoscale, 11, 4101.
[63] Mohini, R., Lakshminarasimhan, N., 2016, Coupled semiconductor nanocomposite g-C3N4/TiO2 with enhanced visible light photocatalytic activity, Materials Research Bulletin, 76, 370.
[64] Pestana, C.J., Hui, J., Camacho-Muñoz, D., Edwards, C., Robertson, P.K.J., Irvine, J.T.S., Lawton, L.A., 2023, Solar-driven semi-conductor photocatalytic water treatment (TiO2, g-C3N4, and TiO2+g-C3N4) of cyanotoxins: Proof-of-concept study with microcystin-LR, Chemosphere, 310, 136828.
[65] Duan, C., Meng, X., Liu, C., Lu, W., Liu, J., Dai, L., Wang, W., Zhao, W., Xiong, C., Ni, Y., 2019, Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation, Carbohydrate Polymers, 222, 115042.