تحلیل و رتبهبندی موانع پذیرش هوش مصنوعی در صنعت بهداشت و درمان ایران: رویکردی مبتنی بر مدلسازی ساختاری تفسیری
الموضوعات : سامانههای پردازشی و ارتباطی چندرسانهای هوشمندسولماز هاشمی 1 , آرش زارع طلب 2
1 - گروه مدیریت بازرگانی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مدیریت بازرگانی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: هوش مصنوعی, صنعت بهداشت و درمان, مدلسازی ساختاری تفسیری,
ملخص المقالة :
هدف اصلی پژوهش حاضر شناسایی رتبهبندی موانع پذیرش هوش مصنوعی در صنعت بهداشت و درمان کشور است. اين پژوهش، تحقیقی توصیفی - پیمایشی و از نظر هدف از نوع پژوهشهای کاربردی محسوب میشود. جامعه آماری این تحقیق شامل مدیران ارشد شاغل در بیمارستانهای دولتی استان تهران می باشد. دراین پژوهش برای گردآوری دادهها از دو روش کتابخانهای و میدانی استفاده شد و ابزار گردآوری دادهها نیز پرسشنامه مقایسات زوجی بوده است که در اختیار خبرگان 20 نفر از مدیران ارشد صنعت بهداشت و درمان قرار گرفت. جهت تجزیه و تحلیل دادهها از روش مدل سازی ساختاری تفسیری استفاده شد. پس از استخراج موانع پذیرش هوش مصنوعی در صنعت بهداشت و درمان از طریق مطالعه و بررسی پیشینه و ادبیات تحقیق، با استفاده از روش تکنیک دلفی موانع پذیرش هوش مصنوعی در صنعت بهداشت و درمان با استفاده از مصاحبه با 10 نفر از خبرگان استخراج شد و به عنوان موانع پذیرش هوش مصنوعی در صنعت بهداشت و درمان انتخاب شدند. براي انجام اين پژوهش از روش مدلسازي ساختاري تفسيری استفاده شده است. ايده اصلي مدلسازي ساختاري تفسيري تجزيه يک سيستم پيچيده به چند زير سيستم با استفاده از تجربه عملي و دانش خبرگان به منظور ساخت يک مدل ساختاري چند سطحي مي باشد. در این مطالعه پس از انجام مدل ساختاری – تفسیری تحلیل میک مک انجام خواهد گرفت. هدف از تحليل میک مک تجزيه و تحليل قدرت محرکه و قدرت وابستگي متغيرها است. نتایج روش دلفی نشان داد که عوامل اخلاقی و اجتماعی و سیاستهای دولت در سطوح بنیادی و پایین مدل ساختاری تفسیری قرار دارند که نشان دهنده اهمیت این عوامل در پذیرش هوش مصنوعی در صنعت بهداشت و درمان کشور هستند.
1. Ho M.-T., Lee N.-T.B., Mantello P., Ho M.-T., Ghotbi N., (2023). Understanding the acceptance of emotional artificial intelligence in Japanese healthcare system: a cross-sectional survey of clinic visitors’ attitude, Technol. Soc. 72 (2023), 102166,
2. Hajkowicz S. Sanderson, C., Karimi S., Bratanova A., Naughtin C. (2023). Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: a bibliometric analysis of research publications from 1960-2021, Technol. Soc. 74 (2023), 102260,
3. Goirand M., Austin E., Clay-Williams R. (2021). Implementing ethics in healthcare AIbased applications: a scoping review, Sci. Eng. Ethics 27 (5) (2021) 61, https:// doi.org/10.1007/s11948-021-00336-3.
4. Xu X., Mazloom R., Goligerdian A., Staley J., Amini M., Wyckoff G.J., Jaberi M. (2019). Making sense of pharmacovigilance and drug adverse event reporting: comparative similarity association analysis using AI machine learning algorithms in dogs and cats, Top. Companion Anim. Med. 37 (2019), 100366,
5. Horgan D., Romano M., Morr´e S.A., Kalra D. (2019). Artificial Intelligence: power for civilisation – and for better healthcare, Public Health Genomics 22 (2019) 145–161
6. Khanijahani A., Iezadi S., Dudley S., Goettler M., Kroetsch P., Wise J. (2022). Organizational, professional, and patient characteristics associated with artificial intelligence adoption in healthcare: a systematic review, Health Policy Technol. 11 (1) (2022), 100602.
7. Raghupathi, W., and Raghupathi, V. (2014) Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 2(3).
8. Gujral, G., Shivarama, J., and Mariappan, M. (2019). Artificial Intelligence (AI) and data science for developing intelligent health informatics systems. Proceedings of the National Conference on AI in HI & VR, SHSS-TISS. Mumbai, 30-31 Aug.
9. Laï MC, Brian M, Mamzer MF: Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J Transl Med. 2020,
10. Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol, 2, 230–243.
11. Darcy, A.M.; Louie, A.K.; Roberts, L.W. (2016). Machine Learning and the Profession of Medicine. JAMA, 315, 551–552.
12. Ahmed M, Spooner B, Isherwood J, et al. (2023) A Systematic Review of the Barriers to the Implementation of Artificial Intelligence in Healthcare. Cureus 15(10): e46454. DOI 10.7759/cureus.46454.
13. Price, I.; Nicholson, W. (2017). Artificial intelligence in health care: Applications and legal issues. SciTech Lawyer, 14, 10–13.
14. Lee, E. E., Torous, J., De Choudhury, M., Depp, C. A., Graham, S. A., Kim, H.-C. et al. (2021). Artificial Intelligence for Mental Healthcare: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 856-86
15. Marcu LG, Boyd C, Bezak E: Current issues regarding artificial intelligence in cancer and health care. Implications for medical physicists and biomedical engineers. Health Technol. 2019, 9:375-81.
16. Ahmad OF, Stoyanov D, Lovat LB. (2020). Barriers and pitfalls for artificial intelligence in gastroenterology: ethical and regulatory issues. Elsevier, 22:80-4.
17. Alnasser, B. (2023). The Economic Impact of Artificial Intelligence on Healthcare: A Literature Review. E-Health Telecommunication Systems and Networks, 12, 35-48.
18. Ajmera, P., and Jain, V. (2019). Modelling the barriers of Health 4.0–the fourth healthcare industrial revolution in India by TISM. Operations Management Research, 12, 129–145.
19. Panch, T., Pearson-Stuttard, J., Greaves, F., and Atun, R. (2019). Artificial intelligence: opportunities and risks for public health. The Lancet Digital Health, 1(1), e13-e14.
20. Pinninti, R., and Rajappa, S. (2020). Artificial intelligence in health-care: How long to go? Cancer Research, Statistics and Treatment, 3, 133-4.
21. Paul, Y., Hickok, E., Sinha, A., Tiwari, U., Mohandas, S., Ray, S., and Bidare, P.M. (2018). Artificial intelligence in the healthcare industry in India. Bengaluru: The Centre for Internet and Society, India.
22. Bali, J., and Bali, R.T. (2020). India and the Fourth Industrial Revolution: How we should approach Artificial Intelligence in Healthcare and Biomedical Research? Journal of the Association of Physicians of India, 68, 72.
23. Mohandas, S. (2017). AI and healthcare in India: Looking forward. Roundtable Report. The Centre for Internet and Society, India.
24. Murali, A., and PK, J. (2019). India’s bid to harness AI for healthcare. Factor Daily, April 4.
25. Wahl, B., Cossy-Gantner, A., Germann, S., and Schwalbe, N.R. (2018). Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ global health, 3(4)
26. Panch, T., Pearson-Stuttard, J., Greaves, F., and Atun, R. (2019). Artificial intelligence: opportunities and risks for public health. The Lancet Digital Health, 1(1), e13-e14.
27. Hoodbhoy, Z., Hasan, B., and Siddiqui, K. (2019). Does artificial intelligence have any role in healthcare in low resource settings? Journal of Medical Artificial Intelligence, 2(13).
28. Gearhart A, Gaffar S, Chang AC: A primer on artificial intelligence for the paediatric cardiologist . Cardiol Young, 30:934-45.
29. Gujral, G., Shivarama, J., and Mariappan, M. (2019). Artificial Intelligence (AI) and data science for developing intelligent health informatics systems. Proceedings of the National Conference on AI in HI & VR, SHSS-TISS. Mumbai, 30-31 Aug.
30. Patil, A. (2018). Time for Artificial Intelligence to Meet Healthcare Costs. Healthcare innovation, 4(8).
31. Yang, J., Luo, B., Zhao, C., & Zhang, H. (2022). Artificial Intelligence Healthcare Service Resources Adoption by Medical Institutions Based on TOE Framework. Digit Health, 8.
32. Sunarti, S., Fadzlul Rahman, F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial Intelligence in Healthcare: Opportunities and Risk for Future. Gaceta Sanitaria, 35, S67-S70
33. Kumar, P., Dwivedi, Y. K., & Anand, A. (2021). Responsible Artificial Intelligence (AI) for Value Formation and Market Performance in Healthcare: the Mediating Role of Patient’s Cognitive Engagement. Information Systems Frontiers, 25, 2197-2220
34. Alsheibani, S. A., Cheung, Y. P., & Messom, C. H. (2019). Factors Inhibiting the Adoption of Artificial Intelligence at Organizational-Level: A Preliminary Investigation. In M. Santana, & R. Montealegre (Eds.), AMCIS 2019 Proceedings. Association for Information Systems.
35. Char D.S., M.D. Abramoff, C. Feudtner, Identifying ethical considerations for machine learning healthcare applications, Am. J. Bioeth. 20 (11) (2020) 7–17,
36. Davenport, T., & Kalakota, R. (2019). The Potential for Artificial Intelligence in Healthcare. Future Healthcare Journal, 6, 94-98
37. Nguyen Van, P. (2022). The Critical Factors Impacting Artificial Intelligence Applications Adoption in Vietnam: A Structural Equation Modeling Analysis. Economies, 10(9).
38. Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J. E. et al. (2022). Challenges to Implementing Artificial Intelligence in Healthcare: A Qualitative Interview Study with Healthcare Leaders in Sweden. BMC Health Services Research, 22, Article No. 850
39. Solaimani, S., & Swaak, L. (2023). Critical Success Factors in a Multi-Stage Adoption of Artificial Intelligence: A Necessary Condition Analysis. Journal of Engineering and Technology Management, 69, 101760.
40. Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare Uses of Artificial Intelligence: Challenges and Opportunities for Growth. The Healthcare Management Forum, 32, 272-27
41. Firouzi, F., Farahani, B., Barzegari, M., & Daneshmand, M. (2022). AI-Driven Data Monetization: The Other Face of Data in IoT-Based Smart and Connected Health. IEEE Internet of Things Journal, 9, 5581-5599
42. Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125.
43. Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A Governance Model for the Application of AI in Health Care. Journal of the American Medical Informatics Association, 27, 491-497.
44. Weinert, L., Müller, J., Svensson, L., & Heinze, O. (2022). Perspective of Information Technology Decision Makers on Factors Influencing Adoption and Implementation of Artificial Intelligence Technologies in 40 German Hospitals: Descriptive Analysis. JMIR Medical Informatics, 10, e34678.
45. Sezgin, E. (2023). Artificial Intelligence in Healthcare: Complementing, Not Replacing, Doctors and Healthcare Providers. Digital Health, 9.
46. Brecker, K., Lins, S., & Sunyaev, A. (2023). Why It Remains Challenging to Assess Artificial Intelligence. In Proceedings of the 56th Hawaii International Conference on System Sciences (pp. 5242-5251)
47. Verma, A., Rao, K., Eluri, V., & Sharma, Y. (2020). Regulating AI in Public Health: Systems Challenges and Perspectives. ORF Occasional Paper 261.
48. Hoffmann-Riem, W. (2020). Artificial Intelligence as a Challenge for Law and Regulation. In T. Wischmeyer, & T. Rademacher (Eds.), Regulating Artificial Intelligence, Springer, 5(9), 1-29.
49. Lekadir, K., Feragen, A., Fofanah, A. J., Frangi, A. F., Buyx, A., Emelie, A. et al. (2023). FUTURE-AI: International Consensus Guideline for Trustworthy and Deployable Artificial Intelligence in Healthcare. arXiv preprint arXiv:2309.12325
50. Wolff, J., Pauling, J., Keck, A., & Baumbach, J. (2020). The Economic Impact of Artificial Intelligence in Health Care: Systematic Review. Journal of Medical Internet Research, 22.
51. Alnasser, B. (2023). The Economic Impact of Artificial Intelligence on Healthcare: A Literature Review. E-Health Telecommunication Systems and Networks, 12, 35-48.
52. Ghasemi, S. (2023). Investigating effective factors in the adoption of artificial intelligence in knowledge-based companies. The first national conference without oil, how?, Tehran, [in Persian].
53. Jafari, M; Jaji Babaei, H (2023). Investigating factors affecting the acceptance of artificial intelligence in online purchases by customers. The sixth international conference on new developments in management, economics and accounting, [in Persian].
54. Safari, I; Ansari, A, A (2022). Identifying and ranking factors affecting the adoption of artificial intelligence in the public and private sector. Smart Business Management Studies, 11(41), [in Persian].
55. Svanvik, H. A., Landin, F., Madsstuen, E. A., Sjogren, F., Stiebe, E., To, K. (2023). Mapping the Barriers to AI Implementation in Swedish Healthcare. DEPARTMENT OF TECHNOLOGY MANAGEMENT AND ECONOMICS DIVISION OF SCIENCE, TECHNOLOGY AND SOCIETY.
56. Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J. E. et al. (2022). Challenges to Implementing Artificial Intelligence in Healthcare: A Qualitative Interview Study with Healthcare Leaders in Sweden. BMC Health Services Research, 22(850).