Optical Density Tuning through Refractive Index Contrast in Periodic and Quasi-Periodic 1D Photonic Crystals
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکی
1 - گروه فیزیک، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران
الکلمات المفتاحية: Optical density, Photonic crystals, Refractive index contrast, Periodic structures, Quasi-periodic structures. ,
ملخص المقالة :
This study investigates the optical density (OD) characteristics of one-dimensional photonic crystals (1D PCs) deposited on a polycarbonate substrate, focusing on the comparative performance of periodic and quasi-periodic architectures. Using the transfer matrix method (TMM), four material pairs with varying refractive index contrasts as SiO₂/ZrO₂, TiO₂/MgF₂, Si/Al₂O₃, and Nb₂O₅/CYTOP were analyzed under transverse electric (TE) and transverse magnetic (TM) polarizations across a broad spectral range. The results demonstrate that periodic structures exhibit a single, well-defined photonic bandgap, with its width and strength strongly dependent on refractive index contrast, incident angle, and polarization. By contrast, quasi-periodic configurations significantly enrich the spectral response: the Double-Period sequence fragments the broad bandgap into multiple, narrower mini-gaps, while the Thue–Morse arrangement produces an even denser distribution of ultra-narrow resonances. These findings highlight the critical role of structural complexity in tailoring wave attenuation, offering enhanced spectral selectivity, multi-channel filtering, and high sensitivity to angular and polarization variations. Owing to these features, the proposed designs are well-suited for applications in optical filtering, protective coatings, biochemical sensing, and photonic devices requiring tunable light management. Overall, this work establishes the effectiveness of quasi-periodic stacking as a powerful design strategy for engineering next-generation photonic crystal systems.
[1] V. Ramanathan, K. Muthu, A review of deep learning based one-dimensional photonic crystals for customizable visible light reflection spectrum, Journal of Nonlinear Optical Physics & Materials. 15 (2025) 2530001. doi: 10.1142/S0218863525300014.
[2] H. Zhou, D. Li, C. Lee, Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices. AI Sensors. 1(1) (2025) 5. doi: 10.3390/aisens1010005.
[3] A. Araújo, C. Costa, S. Azevedo, GM. Viswanathan, CG. Bezerra, Optical properties of 1D photonic time quasicrystals, Journal of the Optical Society of America B. 42(4) (2025) 949-63. doi:10.1364/JOSAB.542001.
[4] E. Liu, J. Liu, Quasiperiodic photonic crystal fiber, Chinese Optics Letters. 21(6) (2023) 060603. doi:10.3788/COL202321.060603
[5] A. Biswal, R. Kumar, H. Behera, IL. Lyubchanskii. Quasi-periodic one-dimensional photonic crystal as a perspective structures for nanophotonics: analysis of transmittivity spectra. Materials Science and Engineering: B. 284 (2022) 115915. doi:10.1016/j.mseb.2022.115915.
[6] A. Augustyniak, M. Zdanowicz, T. Osuchm, Self-similarity properties of complex quasi-periodic Fibonacci and Cantor photonic crystals. InPhotonics. 8(12) (2021) 558. doi:10.3390/photonics8120558.
[7] J. Wu, Z. Wang, B. Wu, Z. Shi, X. Wu. The giant enhancement of nonreciprocal radiation in Thue-morse aperiodic structures. Optics & Laser Technology. 152 (2022) 108138. doi:10.1016/j.optlastec.2022.108138.
[8] F. Segovia-Chaves, H. Vinck-Posada, V. Dhasarathan, Transmittance spectrum of a double-period photonic structure composed of polymer materials. Optik. 239 (2021) 166756. doi:10.1016/j.ijleo.2021.166756.
[9] F. Segovia-Chaves, HA. Elsayed. Transmittance spectrum in a Rudin Shapiro quasiperiodic one-dimensional photonic crystal with superconducting layers. Physica C: Superconductivity and its Applications. 587 (2021) 1353898. doi:10.1016/j.physc.2021.1353898.
[10] ZA. Zaky, HA. Alqhtani, M. El Malki, I. Antraoui, A. Khettabi, M. Sallah, Selective filter using Thue–Morse structures by the finite element and transfer matrix methods. Journal of Computational Electronics. (4): (2025) 120. doi:10.1007/s10825-025-02364-9.
[11] F. Nutku, S. Gökşin, Comparison of omnidirectional reflectivity of quasi-periodic dielectric multilayers. Optik. 228 (2021)166220. doi:10.1016/j.ijleo.2020.166220.
[12] M. M. Manziuc, C. Gasparik, M. Negucioiu, M. Constantiniuc. Optical properties of zirconia: A review of the literature. EuroBiotech J. 3(1): (2019) 45-51. doi: 10.2478/ebtj-2019-0005.
[13] S. Ge, D. Sang, L. Zou, Y.Yao, C. Zhou, H. Fu, H. Xi, J. Fan, L. Meng, C. Wang. A review on the progress of optoelectronic devices based on TiO2 thin films and nanomaterials. Nanomaterials. 13(7): (2023) 1141. doi:10.3390/nano13071141.
[14] C. Nico, T. Monteiro, MP. Graça. Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science. 80: (2016) 1-37. doi:10.1016/j.pmatsci.2016.02.001.
[15] A. S. Sinitskii, A. V. Knot'ko, Y. D. Tretyakov. Silica photonic crystals: synthesis and optical properties. Solid state ionics. 172 (1-4): (2004) 477-9. doi: 10.1016/j.ssi.2004.01.048
[16] CH. Yu, ST. Wicaksono, ST. Wang, TH. Chen. Electrical and Optical Properties of ZnO: MgF2 with Ag Thin Film for Optoelectronic Sensor Application. Sensors and Materials. 37(5): (2025) 1825-33. doi:10.18494/SAM5316.
[17] A. Theodosiou, K. Kalli. Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer optical fibres. Optical Fiber Technology. 54: (2020) 102079. doi:10.1016/j.yofte.2019.102079.
[18] Mamouei, M., Budidha, K., Baishya, N. et al.: An empirical investigation of deviations from the Beer–Lambert law in optical estimation of lactate. Sci. Rep. 11, 13734 (2021).
[19] Parnis, JM., Oldham, KB.: Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry. Journal of Photochemistry and Photobiology A: Chemistry. 267, 6-10 (2013).
[20] L. Missoni, G. Ortiz, M. Martínez-Ricci, V. Toranzos, W. Luis-Mochán. Rough 1D photonic crystals: a transfer matrix approach. Opt. Mater. 109 (2020) 110012. doi:10.1016/j.optmat.2020.110012.
[21] A. Karimi, M. Jabbari, G. Solookinejad. Design and simulation of metal-insulator-metal waveguide for filtering and sensor applications. Journal of Optoelectronical Nanostructures, 8(3) (2023) 90-109. doi:10.30495/jopn.2023.31705.1284.
[22] M. Heidary Orojloo, M. Jabbari, G. Solookinejad, F. Sohrabi. Design and modeling of photonic crystal Absorber by using Gold and graphene films. Journal of Optoelectronical Nanostructures. 7(2) (2022) 1-10. doi: 10.30495/jopn.2022.28915.1235.
[23] M. ZekavatFetrat, M. Sabaeian, G. Solookinejad. The effect of ambient temperature on the linear and nonlinear optical properties of truncated pyramidal-shaped InAs/GaAs quantum dot. Journal of Optoelectronical Nanostructures. 6(3) (2021), 81-92. doi: 10.30495/jopn.2021.29138.1240.
[24] Kh. Zarei, G. Solookinejad, M. Jabbari. Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation. Journal of Optoelectronical Nanostructures. 1 (1), 2016, 65-80. doi: 20.1001.1.24237361.2016.1.1.6.3
[25] S. M. S. Hashemi Nassab, M. Imanieh, A. Kamaly, The effect of doping and thickness of the layers on CIGS solar cell efficiency, J. Optoelectron. Nanostructures. 1(1) (2016) 9-24. doi:20.1001.1.24237361.2016.1.1.2.9.