The Ability of NCP@POCl2-x Core-Shell Magnetic Nano-Catalyst for Simultaneous Conversion of Epoxides into Cyanohydrin and α,β-Unsaturated Carboxylic Acid
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکی
1 - Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
الکلمات المفتاحية: α, β-Unsaturated Carboxylic Acid, Cyanohydrin, Epoxide, Magnetic Chitosan, Nanocatalyst,
ملخص المقالة :
This paper presents a new environmental, and remarkably efficient heterogeneous magnetic nanocomposite, NCP@POCl2-x (Fe3O4@SiO2@CS@POCl2-x), designed for the regioselective production of cyanide compounds from epoxides using NaCN, subsequently facilitating the synthesis of α,β-unsaturated carboxylic acids. The reactions were conducted under mild conditions, demonstrating the catalyst's remarkable performance with high yields. The presence of POCl2-x and the influence of water and heat facilitated the transformation of epoxides into cyanohydrin and α,β-unsaturated carboxylic acids. Remarkably, the reactions demonstrate excellent regioselectivity, producing clean and quantitative products. NCP@POCl2-x is a heterogeneous magnetic nanocatalyst with a strong magnetic core of Fe3O4 surrounded by chitosan as a green layer and functionalized by the POCl2-x group. This catalyst can be easily separated using external magnetic force. The combination of heterogeneity, magnetic properties, easy recovery, and exceptional performance establishes NCP@POCl2-x as a valuable tool for efficient and selective transformations of epoxides.
[1] K. Aida, M. Hirao, A. Funabashi, N. Sugimura, E. Ota, J. Yamaguchi, Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis, Chem 8 (2022), 1762-1774. https://doi.org/10.1016/j.chempr.2022.04.010
[2] F. Moschona, I. Savvopoulou, M. Tsitopoulou, D. Tataraki, G. Rassias, Epoxide syntheses and ring-opening reactions in drug development, Catalysts 10(10) (2020), 1117. https://doi.org/10.3390/catal10101117.
[3] M. Winkler, M. Horvat, A. Schiefer, V. Weilch, F. Rudroff, M. Pátek, Martínková, L. Organic acid to nitrile: a chemoenzymatic three‐step route. Advanced Synthesis & Catalysis 365 (1) (2023), 37-42. https://doi.org/10.1002/adsc.202201053.
[4] Y. Liang, J. Luo, D. Milstein, Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines, Chemical Science 13(20) (2022), 5913-5919. https://doi.org/10.1039/D2SC01959K
[5] L.-H. Du, M. Xue, M.-J. Yang, Y. Pan, L.-Y. Zheng, Z.-M. Ou, X.-P. Luo, Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System, Catalysts 10(12) (2020), 1419. https://doi.org/10.3390/catal10121419.
[6] M. Amoohadi, M. Mozaffari, A. Gharaati, M. Rezazadeh, A Comparative Study of Insulators on Magnetic Properties of Sendust Based Nanocomposite Powder Cores. Journal of Optoelectronical Nanostructures 3 (4)(2018), 1-14. https://journals.marvdasht.iau.ir/article_3249.html
[7] Y. He, J. Wang, T. Zhu, Z. Zheng, H. Wei, Nitrogen atom insertion into arenols to access benzazepines. Chemical Science 15 (7)(2024), 2612-2617. DOI https://doi.org/10.1039/D3SC05367A
[8] B. R. Moser, S. C. Cermak, K. M. Doll, J. A. Kenar, B. K. Sharma, A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications, Journal of the American Oil Chemists Society 99(10) (2022), 801-842. https://doi.org/10.1002/aocs.12623
[9] P. Sharma, K. R. Senwar, M. K. Jeengar, T. S. Reddy, V. Naidu, A. Kamal, N. Shankaraiah, H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation, European Journal of Medicinal Chemistry, 104 (2015), 11-24. https://doi.org/10.1016/j.ejmech.2015.09.025
[10] F. Ebrahimzadeh, Poly (N-bromosuccinimide)(PNBS) as a mild, efficient, non-acidic, polymeric and heterogeneous catalyst applied for easy conversion of epoxides into thiiranes by treatment with KSCN or (NH2)2CS at room temperature, Journal of Physical Chemistry & Eleectrochemistry, 4 (2016), 119-123.
[11] M. Thirumalaikumar, Ring opening reactions of epoxides. A review, Organic Preparations and Procedures International 54 (1) (2022), 1-39. https://doi.org/10.1080/00304948.2021.1979357
[12] D. Kieslich, J. Christoffers, Cyanide anions as nucleophilic catalysts in organic synthesis. Synthesis 53 (19) (2021), 3485-3496. https://doi.org/10.1055/a-1499-8943
[13] M. S. Malik, B. H. Asghar, S. Azeeza, R. J. Obaid, I. I. Thagafi, R. S. Jassas, H. M. Altass, M. Morad, Z. Moussa, S. A. Ahmed, Facile Amberlyst A-21 catalyzed access of β-hydroxynitriles via epoxide opening in water, Arabian Journal of Chemistry 13 (11) (2020), 8200-8208. https://doi.org/10.1016/j.arabjc.2020.09.053.
[14] S. Meninno, A. Lattanzi, Epoxides: Small Rings to Play with under Asymmetric Organocatalysis, ACS Organic & Inorganic Au 2 (4) (2022), 289-305. https://doi.org/10.1021/acsorginorgau.2c00009
[15] S. Nagamalla, J. T.Mague,S. Sathyamoorthi, Ring Opening of Epoxides by Pendant Silanols. Organic letters 24 (3) (2022), 939-943. https://doi.org/10.1021/acs.orglett.1c04310.
[16] T. Junge, M. Titze, W. Frey, R. Peters, Asymmetric Hydrocyanation of N‐Phosphinoyl Aldimines with Acetone Cyanohydrin by Cooperative Lewis Acid/Onium Salt/Brønsted Base Catalysis. ChemCatChem 13 (6) (2021), 1509-1512. https://doi.org/10.1002/cctc.202001921
[17] P. Aberoomand Azar, J. Noroz Haghi, S. Waqif Husain, M. Saber Tehrani, Preparation of Ionic Liquid-Silica Nanoparticles Nanocomposite Film Coated Porous Copper Wire for SolidPhase Microextraction of Pesticides from Tomato Samples. Journal of Optoelectronical Nanostructures 8 (1) (2023), 58-83. https://doi.org/10.30495/jopn.2023.30875.1269.
[18] A. Jahanshir, E. Omugbe, Biexciton in Strongly Oblate Ellipsoidal Quantum Dot with Relativistic Corrections. Journal of Optoelectronical Nanostructures (2024), https://doi.org/10.30495/jopn.2024.32573.1302.
[19] T. Razegh, V. Setoodeh, S. Pilban Jahromi, Influence of particle size on Magnetic behavior of nickel oxide nanoparticles. Journal of Optoelectronical Nanostructures 2 (2) (2017), 11-18. https://journals.marvdasht.iau.ir/article_2420.html
[20] M. Servatkhah, P. Hashemi, R. Pourmand, Binding energy in tuned quantum dots under an external magnetic field. Journal of Optoelectronical Nanostructures 7 (4) (2022), 49-65. https://doi.org/10.30495/jopn.2022.30924.1270.
[21] S.-L. Zhang, Z.-Q. Deng, Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo-and stereoselective access to (E)-enones and (E)-acrylonitriles, Organic & Biomolecular Chemistry 14 (30) (2016), 7282-7294. https://doi.org/10.1039/C6OB01198E.
[22] M.-X. Wang, Y. Wu, Nitrile biotransformations for the synthesis of enantiomerically enriched Baylis–Hillman adducts, Organic & biomolecular chemistry 1 (3), (2003), 535-540. https://doi.org/10.1016/j.tetasy.2008.01.017.
[23] B. Srinivas, V. P. Kumar, R. Sridhar, K. Surendra, Y. Nageswar, K. R. Rao, Regioselective nucleophilic opening of epoxides and aziridines under neutral conditions in the presence of β-cyclodextrin in water, Journal of Molecular Catalysis A: Chemical 261 (1) (2007), 1-5. https://doi.org/10.1016/j.molcata.2006.07.040.
[24] B. Guo, D. S. Zijlstra, J. G. de Vries, E. Otten, Oxa‐Michael Addition to α, β‐Unsaturated Nitriles: An Expedient Route to γ‐Amino Alcohols and Derivatives, ChemCatChem 10 (13) (2018), 2868-2872. https://doi.org/10.1002/cctc.201800509.
[25] A. R. Kiasat, F. Chadorian, S. J. Saghanezhad, Synthesis and characterization of a novel Fe3O4@SiO2/bipyridinium dichloride nanocomposite and its application as a magnetic and recyclable phase-transfer catalyst in the preparation of β-azidoalcohols, β-cyanohydrins, and β-acetoxy alcohols, Comptes Rendus Chimie 18 (12) (2015),1297-1306. https://doi.org/10.1016/j.crci.2015.06.019.
[26] F. Ebrahimzadeh, A. Jamalain, S. Zaree, Core-shell magnetic nanocomposite Fe3O4@SiO2@CS@POCl2-x for alcohols to alkyl halides transformation, Phosphorus, Sulfur, and Silicon and the Related Elements 199 (2) (2023), 169-177. https://doi.org/10.1080/10426507.2023.2279614.
[27] F. Ebrahimzadeh, L. Baramakeh, Efficient Removal of Organic and Inorganic Pollutants from Water Using Fe3O4@SiO2@CS@EDTA Nanocomposite: Optimization via Response Surface Methodology (RSM), ChemistrySelect, 9 (10) (2024), e202302524. https://doi.org/10.1002/slct.202302524.
[28] F. Ebrahimzadeh, Synthesis of secondary amines via amination of alcohols with benzylamine using the magnetic nanocatalyst Fe3O4@SiO2@CS@EDTA/Cu (II), Iranian Journal of Organic Chemistry 4 (15). (2023) 3667-3673.
https://sanad.iau.ir/Journal/iranjoc/Article/1105626/FullText.
[29] F. Ebrahimzadeh, Employment of the magnetic nano-catalyst Fe3O4@ SiO2@CS@PO(OH)2/Cu (II) for the amination of alcohols, Journal of Chemical Reactivity and Synthesis 13(3) (2023), 240-254. https://www.doi.org/20.1001.1.27834107.2023.13.3.4.1.
[30] F. Ebrahimzadeh, One-pot Synthesis of β-Azido and β-Amino Alcohols Using Fe3O4@SiO2@CS@POCl2-x as a Heterogenous and Magnetic Nano Catalyst, Journal of Organic Chemistry Research 8(2) (2022), 89-94. https://doi.org/10.22036/org.chem.2024.429891.1303.
[31] Burfield, D. R.; Lee, K.-H.; Smithers, R. H. Desiccant efficiency in solvent drying. A reappraisal by application of a novel method for solvent water assay. The Journal of Organic Chemistry 1977, 42 (18), 3060-3065. https://doi.org/10.1021/jo00438a024.
[32] D. B. G. Williams, M. Lawton, Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants, The Journal of organic chemistry, 75 (2010) 8351-8354. https://doi.org/10.1021/jo101589h.
[33] J. A. Ciaccio, C. Stanescu, J. Bontemps, Facile conversion of epoxides to β-hydroxy nitriles under anhydrous conditions with lithium cyanide, Tetrahedron letters 33 (11) (1992), 1431-1434. https://doi.org/10.1016/S0040-4039(00)91639-3.
[34] H. Kinfe, V. Chhiba, J. Frederick, M. Bode, K. Mathiba, P. Steenkamp, D. Brady, Enantioselective hydrolysis of β-hydroxy nitriles using the whole cell biocatalyst Rhodococcus rhodochrous ATCC BAA-870, Journal of Molecular Catalysis B: Enzymatic 59 (4) (2009), 231-236. https://doi.org/10.1016/j.molcatb.2008.06.004.
[35] H. Naeimi, M. Moradian, Metal (II) Schiff base complexes as catalysts for the high-regioselective conversion of epoxides to β-hydroxy nitriles in glycol solvents, Canadian journal of chemistry 84 (11) (2006) 1575-1579. https://doi.org/10.1139/v06-158.