Non-radiative Auger Current in a InGaN/GaN Multiple Quantum Well Laser Diode under Hydrostatic Pressure and Temperature
الموضوعات :
فصلنامه نانوساختارهای اپتوالکترونیکی
Rajab Yahyazadeh
1
,
Zahra Hashempour
2
1 - 1Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran.
2 - 1Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran.
تاريخ الإرسال : 04 الإثنين , شوال, 1444
تاريخ التأكيد : 16 الإثنين , ذو القعدة, 1444
تاريخ الإصدار : 11 الإثنين , شوال, 1444
الکلمات المفتاحية:
Multi-Quantum Well,
Auger current,
Overlap integrals,
Laser diodes,
ملخص المقالة :
Abstract:
This study employs a numerical model to analyze the non-radiative Auger current in c-plane InGaN/GaN multiple-quantum-well laser diodes (MQWLD) under hydrostatic pressure and temperature. Finite difference methods (FDMs) were used to acquire energy eigenvalues and their corresponding eigenfunctions of InGaN/GaN MQWLD. In addition, the hole eigenstates were calculated via a 6*6 k.p method under applied hydrostatic pressure and temperature. The calculations demonstrated that the hole-hole-electron (CHHS) and electron-electron-hole (CCCH) Auger coefficients had the largest contribution to the total Auger current (76% and 20%, respectively). Increasing the hydrostatic pressure could increase the amount of the carrier density and the electric field. On the other hand, this increase reduced the overlap integral of wave functions and the localized length of electrons, heavy, light and split of band holes. Also, for the hydrostatic pressure of about 10 GPa and the temperature of 300 K, the non-radiative Auger current has an optimum value of 334 A/cm2. The results reveal that the elevated hydrostatic pressure and temperature play a positive and negative role in the performance of laser diodes.
المصادر:
[1] David, N. G. Young, C. Lund, M. D. Craven. Compensation between radiative and Auger recombinations in III-nitrides: The scaling law of separated-wavefunction recombinations. Appl. Phys. Lett. 115 (2019) 193502.Available:https://iopscience.iop.org/article/10.1149/2.0372001JSS
[2] K. Tan, W. Sun, J. J. WiererJr. N. Tansu. Effect of interface roughness on Auger recombination in semiconductor quantum wells. AIP Advances. 7, 035212 (2017). Available: https://pubs.aip.org/aip/adv/article/7/3/035212/1023080
[3] Steiauf, E. Kioupakis, C. G. Van de Walle. Auger Recombination in GaAs from First Principles, ACS Photonics. 1 (2014) 643. Available: https://pubs.acs.org/doi/abs/10.1021/ph500119q
[4] P. Han, C.H. Oh, D.G. Zheng, H. Kim, J.I. Shim, K. S. Kim, D. S. Shin. Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes. Jpn. J. Appl. Phys.54 (2015) 02BA01. Available: https://iopscience.iop.org/article/10.7567/JJAP.54.02BA01
[5] Liu, C. Haller, Y. Chen, T. Weatherly, J.-F. Carlin, G. Jacopin, R. Butté, N. Grandjean. Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime. Appl. Phys. Lett. 116 (2020) 222106. Available: https://pubs.aip.org/aip/apl/article/116/22/222106/38539
[6] Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett, 98, (2011) 161107. Available: https://pubs.aip.org/aip/apl/article-abstract/98/16/161107/340399
[7] Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A. 207(10) (2010) 2217–2225. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201026149
[8] Auf der Maur, G. Moses, J. M. Gordon, X. Huang, Y. Zhao, E. A. Katz. Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells. Sol. Energy Mater Sol. Cells. 230 (2021) 111253. Available: https://www.sciencedirect.com/science/article/pii/S092702482100297X
[9] Sefidgar, H. R. Saghai, H. G. K. Azar. Enhancing Efficiency of Twobond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures. 4(2) (2019) 84-102. Available: https://jopn.marvdasht.iau.ir/article_3480_0b715e5dbfb8c90033530e34eb33a84a.pdf
[10] Piprek, F. Römer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106 (2015) 101101. Available: https://www.nusod.org/piprek/piprek15apl.pdf
[11] -Y. Ryu, G.H. Ryu, C. Onwukaeme. B. Ma, Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes. Opt. Express. 28(19) (2020) 27459. Available: https://pubmed.ncbi.nlm.nih.gov/32988039
[12] Cheng, Z. Li, J. Zhang, X. Lin, D. Yang, H. Chen, S. Wu, S. Yao. Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes. Nanomaterials. 11 (2021) 2070. Available: https://www.mdpi.com/2079-4991/11/8/2070
[13] Picozzi, R. Asahi, C. B. Geller, A. J. Freeman. Accurate First-Principles Detailed-Balance Determination of Auger Recombination and Impact Ionization Rates in Semiconductors. Phys. Rev. Lett. 89(19) (2002) 197601. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.197601
[14] S. Polkovnikov, G. G. Zegrya. Auger recombination in semiconductor quantum wells. Phys. Rev. B, 58(7) (1998) 4039-4056. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.4039
[15] Piprek. Efficiency Models for GaN-Based Light-Emitting Diodes: Status and Challenges. Materials, 13 (2020) 5174. Available: https://www.mdpi.com/1996-1944/13/22/5174
[16] M. McMahon, E. Kioupakis, S. Schulz. Atomistic analysis of Auger recombination in c-plane (In,Ga)N/GaN quantum wells: Temperature-dependent competition between radiative and nonradiative recombination. Phys. Rev. B. 105 (2022) 195307. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.195307
[17] Belmabrouk,, B. Chouchen , E. M. Feddi , F. Dujardin , I. Tlili , M. B. Ayed, M.Hichem Gazzah. Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik, 207 (2020) 163883. Available: https://www.sciencedirect.com/science/article/pii/S0030402619317814
[18] X Huang et al. Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano. 10(5) (2016) 5145. Available: https://pubs.acs.org/doi/10.1021/acsnano.6b00417
[19] K. Ridley, W. J. Schaff, and L. F. Eastman. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. J. Appl. Phys. 94 (2003) 3972. Available: https://pubs.aip.org/aip/jap/article-abstract/94/6/3972/292303
[20] Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures J. Phys. Condens. Matter. 14 (2002) 3399. Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/13/302
[21] Asgari, K. Khalili. Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell. Sol. Energy Mater Sol. Cells. 95 (2011) 3124–3129. Available: https://www.sciencedirect.com/science/article/pii/S0927024811003898
[22] Fiorentini. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80 (2002) 1204. Available: https://pubs.aip.org/aip/apl/article-abstract/80/7/1204/511321
[23] Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385. Available: https://pubs.aip.org/aip/jap/article-abstract/85/4/2385/491363
[24] J. Bala, A. J. Peter, C. W. Lee. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga 0.7In 0.3N/GaN quantum ring. Chem. Phys. 495 (2017) 42–47. Available: https://www.sciencedirect.com/science/article/pii/S0301010417304160
[25] L. Chuang, C. S. Chang. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol. 12 (1997) 252–263. Available:
[26] L. Chuang and C. S. Chang. k.p method for strained wurtzite semiconductors. Phys. Rev. B. 54(4) (1996) 2491-2504. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.2491
[27] Piprek and S. Nakamura. Physics of high-power InGaN/GaN lasers. IEE Proceedings – Optoelectronics. 149(4) (2002) 145–151. Available: https://www.nusod.org/piprek/piprek02iee.pdf
[28] Venkatachalam, P.D. Yoder, B. Klein, A. Kulkarni, Nitrid band-structure model in quantum well laser simulater. Opt Quant Electron. 40 (2008) 295. https://link.springer.com/article/10.1007/s11082-008-9199-4
[29] D. Andrew, E. O. O’Reilly. Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well laser structure. Appl. Phys. Lett. 84 (2004) 182. Available: https://pubs.aip.org/aip/apl/article-abstract/84/11/1826/531040
[30] Wang, P. V. Allmen, J.-P. Leburton, K. J. Linden. Auger Recombination in Long- Wavelength Strained-Layer Quantum-Well Structures. IEEE J. Quantum Electron. 31(5) (1995) 864-875. Available: https://ieeexplore.ieee.org/document/375931
[31] Asgari, M. Kalafi, L. Faraone. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Physica E. 28 (2005) 491–499. Available: https://www.sciencedirect.com/science/article/pii/S1386947705002183
[32] Watson-Parris, M. J. Godfrey, P. Dawson. Carrier localization mechanisms in InxGa1−xN/GaN quantum wells. Phys. Rev. B. 83 (2011) 115321. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.115321
[33] Yahyazadeh. Effect of hydrostatic pressure on the radiative current density of InGaN/GaN multiple quantum well light emitting diodes. Opt Quant Electron. 53 (2021) 571. Available: https://link.springer.com/article/10.1007/s11082-021-03236-9
[34] R Yahyazadeh, Z Hashempour. Numerical Modeling of Electronic and Electrical Characteristics of Al Ga N / GaN Multiple Quantum Well Solar Cells, J. Optoelectron. Nanostruct. 5(3) (2020) 81. Available: https://jopn.marvdasht.iau.ir/article_4406_670911b9469aba0ae5aa327d5bb3b34e.pdf
[35] Yahyazadeh. Effect of hydrostatic pressure on the photocurrent density of InGaN/GaN multiple quantum well solar cells. Indian Journal of Physics. 96 (2022) 2815. Available: https://link.springer.com/article/10.1007/s12648-021-02218-7
[36] Yahyazadeh. Numerical modeling of electronic and electrical characteristics of InGaN/GaN multiple quantum well solar cells. Journal of Photonics for Energy. 10 (2020) 045504. Available: https://www.spiedigitallibrary.org/journals/journal-of-photonics-for energy//10.1117/1.JPE.10.045504
[37] yahyazadeh, Z. Hashempour. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures. 6(2) (2021) 1. Available: https://jopn.marvdasht.iau.ir/article_4768_17586fedc153930972ae0f3cb2317226.pdf
[38] Kioupakis, D. Steiauf, P. Rinke, K.ris T. Delaney, C. G. Van de Walle. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B. 92 (2015) 035207. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.035207
[39] Chouchen, M. H. Gazzah, A. Bajahzar, H. Belmabrouk. Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects. AIP Adv. 9 (2019) 045313. Available: https://pubs.aip.org/aip/adv/article/9/4/045313/1076706
[40] Jogai. Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 93 (2003) 1631. Available: https://pubs.aip.org/aip/jap/article-abstract/93/3/1631/293059
[41] Jogai. Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures. Phys. stat. sol (b). 233 (2002) 506. Available:https://onlinelibrary.wiley.com/doi/epdf/10.1002/1521-3951(200210)233:3<506::aid-pssb506>3.0.co;2-r
[42] Horri, S. Z. Mirmoeini. Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser. Journal of Optoelectronical Nanostructures. 5(2) (2020) 25-38. Available: https://jopn.marvdasht.iau.ir/article_4216_16b679cf6224faf5b5bb84a468ea2283.pdf
[43] Amirhoseiny, G. Alahyarizadeh. Enhancement of Deep Violet InGaN Double Quantum WellsLaser Diodes Performance Characteristics Using Superlattice Last Quantum Barrier. Journal of Optoelectronical Nanostructures. 6(2) (2021) 107-120. Available: https://jopn.marvdasht.iau.ir/article_4776_4941a2547e09c61dfc979b5fed25a722.pdf
[44] B. Yekta, H. Kaatuzian. Design considerations to improve high temperature characteristics of 1.3 μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers. Optik. 122 (2011) 514. Available:https://www.sciencedirect.com/science/article/pii/S0030402610001567
[45] Hader; J.V. Moloney, S.W. Koch. Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers. IEEE J. Quantum Electron. 41(10) (2005) 1217- 1226. Available: https://ieeexplore.ieee.org/document/1510789
[46] H. Tan, G. L. Snider, L. D. Chang, E. L. Hu. A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys. 68 (1990) 4071. Available: https://pubs.aip.org/aip/jap/article-abstract/68/8/4071/19325
[47] Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn. High-Power and High-Efficiency InGaN-Based Light Emitters. EEE Trans Electron Devices. 57(1) (2010) 79 – 87. Available: https://ieeexplore.ieee.org/document/5345808
[48] Bertazzi, X. Zhou, M. Goano, G. Ghione, E. Bellotti. Auger recombination in InGaN/GaN quantum wells: A full-Brillouin-zone study. Appl. Phys. Lett. 103 (2013) 081106. Available: https://pubs.aip.org/aip/apl/article-abstract/103/8/081106/130246
[49] Bertazzi, M. Goano, E. Bellotti. A numerical study of Auger recombination in bulk InGaN. Appl. Phys. Lett. 97 (2010) 231118. Available: https://pubs.aip.org/aip/apl/article abstract/97/23/231118/325187