Preparation of Ionic Liquid-Silica Nanoparticles Nanocomposite Film Coated Porous Copper Wire for SolidPhase Microextraction of Pesticides from Tomato Samples
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیParviz Aberoomand Azar 1 , Javad Noroz Haghi 2 , Seyed Waqif Husain 3 , Mohammad Saber Tehrani 4
1 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
الکلمات المفتاحية: Nanoparticles, Ionic liquids, Pesticide, Solid-phase microextraction, Solgel,
ملخص المقالة :
In this study, a new solid phase micro extraction (SPME)
fiber coated by sol-gel technology based on polyethylene
glycol (PEG) grafted ionic liquids (ILs), and silica
nanoparticles (silica NPs) on a porous copper substrate
was fabricated. The as-prepared fiber (PEG-ILs-silica
NPs) was then used to extract a variety of pesticides in
tomato samples before prior to their gas chromatography
flame ionization detection (GC-FID). The key parameters
influencing extraction efficiency containing including
extraction time, stirring rate, extraction temperature, pH,
ionic strength, and desorption temperature, and time were
investigated and optimized. The relative standard
deviations (RSDs) for single fiber repeatability ranged
from 1.2 to 4.6% (n=6), and the RSDs for fiber-to-fiber
reproducibility (n=6) were 3.3–6.8%, respectively. The
proposed method based on the PEG-ILs-silica NPs fiber
was successfully applied for the determination of targeted
pesticides in tomato samples with good recoveries from
89.8 to 103.5% (RSDs=2.1-6.9).
[1] S. M. A. Wahib, W. A. W. Ibrahim, and M. M. Sanagi. New methyltrimethoxysilane-(3-mercaptopropyl)- trimethoxysilane coated hollow fiber-solid phase microextraction for hexanal and heptanal analysis. Malaysian Journal of Analytical Sciences. 20 (2015) 51-57. https://www.researchgate.net/profile/Wan-Aini-Wan-Ibrahim/publication/ 303127973_New_methyltrimethoxysilane-3-mercaptopropyl-_trimethoxysilane_coated_hollow_fiber-solid_phase_microextraction _for_hexanal_and_heptanal_analysis/links/586aee3f08ae329d621134da/New-methyltrimethoxysilane-3-mercaptopropyl-trimethoxysilane-coated-hollow-fiber-solid-phase-microextraction-for-hexanal-and-heptanal-analysis.pdf
[2] L. B. Abdulra'uf, M. K. Chai, and G. H. Tan. Applications of solid-phase microextraction for the Analysis of pesticide residues in fruits and vegetables: A Review. Journal of AOAC International. 95(5) (2012) 1272-1290. https://doi.org/10.5740/jaoacint.SGE_Abdulrauf.
[3] M. Andraščíková, and S. Hrouzková. Recent achievements and applications of solid–phase microextraction in pesticide residues analysis in food. Acta Chimica Slovaca. 8(2) (2015) 178-190. https://sciendo.com/article /10.1515/acs-2015-0030.
[4] C. Barata, A. Solayan, and C. Porte. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic Toxicology. 66(2) (2004)125-139. https://www.sciencedirect.com/science/article/abs/pii/S0166445X03001966
[5] S. Di, S. Shi, P. Xu, J. Diao, and Z. Zhou. Comparison of Different Extraction Methods for Analysis of 10 Organochlorine Pesticides: Application of MAE–SPE Method in Soil from Beijing. Bulletin of Environmental Contamination and Toxicology. 95(1) (2015) 67-72. https://link.springer.com/article/10.1007/s00128-015-1538-0.
[6] L. Gong, F. Shi, S. Jiang, Y. Zhao, and C. Guo. Determination of nine pesticide residues in vegetables by matrix solid-phase dispersion-ultra performance liquid chromatography-tandem mass spectrometry. Se Pu. 33(4) (2015) 408-412. DOI: 10.3724/sp.j.1123.2014.12016.
[7] K. Kitana. Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand.International Journal of Biological, Biomolecular, Agricultural. Food and Biotechnological Engineering. 33 (2009) 200-215. https://europepmc.org/article/med/26292412.
[8] S. Cruz, C. Lino, and M. I. Silveira. Evaluation of organochlorine pesticide residues in human serum from an urban and two rural populations in Portugal. Science of Total Environment. 317(1-3) (2003) 23-35. https://doi.org/10.1016/S0048-9697(03)00334-6. https://www.sciencedirect.com/science/article/pii/S0048969703003346.
[9] H. Kalhor, S. Hashemipour, and M. R. Yaftian. Ultrasound-Assisted Emulsification-Microextraction/Ion Mobility Spectrometry Combination: Application for Analysis of Organophosphorus Pesticide Residues in Rice Samples. Food Analytical Methods. 9(11) (2016) 3003-3014. https://link.springer.com/article/10.1007/s12161-016-0492-8.
[10] S. Mishra, M. K. Saini, S. Alam, L. K. Thakur, and S. K. Raza. Method Validation and Uncertainity measurement for Determination of 25 Pesticides by GC-ECD and MSD in Banana using modified QuEChERS Technique. International Research Journal of Environmental Science. 4(3) (2015) 21-37. https://www.researchgate.net/profile/Sudeep-Mishra-3/publication/346929335_Method_Validation_and_Uncertainity_measurement_for_Determination_of_25_Pesticides_by_GC-ECD_and_MSD_in_ Banana_using_modified_QuEChERS_Technique/links/5fd26d7345851568d154c842/Method-Validation-and-Uncertainity-measurement-for-Determination-of-25-Pesticides-by-GC-ECD-and-MSD-in-Banana-using-modified-QuEChERS-Technique.pdf.
[11] A. Di Muccio, P. Fidente, D. A. Barbini, R. Dommarco, S. Seccia, and P. Morrica. Application of solid-phase extraction and liquid chromatography–mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. Journal of Chromatography A. 1108(1) (2006) 1-6. https://www.sciencedirect.com/science/article/abs/pii/S0021967306000999.
[12] D. A. Lambropoulou, and T. A. Albanis. Methods of sample preparation for determination of pesticide residues in food matrices by chromatography–mass spectrometry-based techniques: a review. Analytical and Bioanalytical Chemistry. 389(6) (2007) 1663-1686. https://link.springer.com/article/10.1007/s00216-007-1348-2.
[13] F. J. Schenck, S. J. Lehotay, and V. Vega. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. Journal of Separation Science. 25(14) (2002) 883-890. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/1615-9314(20021001)25:14%3C883::AID-JSSC883%3E3.0.CO;2-7.
[14] J. Pawliszyn. Theory of solid-phase microextraction. Journal of Chromatographic Science. 38 (2000) 270-278. https://www.sciencedirect.com/science/article/pii/B9780124160170000024.
[15] M. Anastassiades, S. J. Lehotay, D. Stajnbaher, and F. J. Schenck. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of AOAC International. 86(2) (2003) 412-431. https://academic.oup.com/jaoac/article/86/2/412/5656996.
[16] C. L. Arthur, and J. Pawliszyn. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry. 62(19) (1990) 2145-2148. https://pubs.acs.org/doi/pdf/10.1021/ac00218a019.
[17] J. Pawliszyn. Solid Phase Microextraction: Theory and Practice. Wiley. (1997).https://books.google.com/books?hl=en&lr=&id=314NFMn6WQ8C&oi=fnd&pg=PA1&dq=Solid+Phase+Microextraction:+Theory+and+Practice&ots=_BnPnxltbN&sig=ch16kQ7okShJ3Hg-txkVzhK-fFM#v=onepage&q=Solid%20Phase%20Microextraction%3A%20Theory%20and%20Practice&f=false.
[18] R. Boussahel, S. Bouland, K. M. Moussaoui, M. Baudu, and A. Montiel. Determination of chlorinated pesticides in water bySPME/GC. Water Research. 36(7) (2002) 1909-1911. https://www.sciencedirect.com/ science/article/abs/pii/S0043135401003724.
[19] H. Kataoka, H. L. Lord, and J. Pawliszyn. Applications of solid-phase microextraction in food analysis. Journal of Chromatography A. 880(1-2) (2002) 35-62. https://www.sciencedirect.com/science/article/abs/pii/ S0021967300003095.
[20] S. A. Wercinski, Solid Phase Microextraction: A PRACTICAL GUIDE. CRC Press. (1999). https://books.google.com/books?hl=en&lr=&id= zPDLaUvhCtAC&oi=fnd&pg=PR3&dq=Solid+Phase+Microextraction:+A+PRACTICAL+GUIDE&ots=y8OC90h6Vx&sig=JKAdImqv1yTY6bbAnFVKiOa-GUY#v=onepage&q=Solid%20Phase%20Microextraction%3A%20 A%20PRACTICAL%20GUIDE&f=false.
[21] S. Risticevic, V. H. Niri, D. Vuckovic, and J. Pawliszyn. Recent developments in solid-phase microextraction. Analytical and Bioanalytical Chemistry. 393(3) (2009) 781-795. https://link.springer.com/article/10.1007/ s00216-008-2375-3.
[22] D. Budziak, E. Martendal, and E. Carasek. New poly (ethylene glycol) solid-phase microextraction fiber employing zirconium oxide electrolytically deposited onto a NiTi alloy as substrate for sol-gel reactions. Journal of Chromatography A. 1198-1199 (2008) 54-58. https://www.sciencedirect.com/science/article/abs/pii/S0021967308009072.
[23] D. Djozan, B. Ebrahimi, M. Mahkam, and M. A. Farajzadeh. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber. Analytica chimica acta. 674(1) (2010) 40-48.
[24] D. Djozan, Y. Assadi, and G. Karim-Nezhad. Modified copper wire as solid-phase microextraction fiber, selective extraction of some amines. Chromatographia. 56(9-10) (2002) 611-616. https://doi.org/10.1007/BF02497678.
[25] H. Bagheri, H. Sistani, and Z. Ayazi. Novel unbreakable solid-phase microextraction fiber by electrodeposition of silica sol-gel on gold. Journal of Separation Science. 34(22) (2011) 3246-3252. https://doi.org/ 10.1002/jssc.201100367.https://www.sciencedirect.com/science/article/abs/pii/S0003267010007440.
[26] P. Aberoomand Azar, S. Mohammadi Azar, M. Saber Tehrani, and J. Norooz Haghi. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf. Journal of Chemistry. 2013 (2013) 30-35. https://doi.org/10.1155/2013/347927.https://www.hindawi.com/journals/jchem/2013/347927/.
[27] R. Jiang, F. Zhu, T. Luan, and J. Pawliszyn. Carbon nanotube-coated solid-phase microextraction metal fiber based on sol–gel technique. Journal of Chromatography A. 1216(22) (2009) 4641-4647. https://www.sciencedirect.com/science/article/abs/pii/S0021967309004890.
[28] H. Bagheri, and A. Roostaie. Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating. Journal of Chromatography A. 1238 (2012) 22-29. https://doi.org/10.1016/j.chroma.2012.03.027. https://www.sciencedirect.com/science/article/abs/pii/S0021967312004128.
[29] N. Rastkari, R. Ahmadkhaniha, and M. Yunesian. Single-walled carbon nanotubes as an effective adsorbent in solid-phase microextraction of low-level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether from human urine. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences. 877(14-15) (2009) 1568-1574. https://www.sciencedirect.com/science/article/abs/pii/S1570023209002542.
[30] S. L. Chong, D. Wang, J. D. Hayes, B. W. Wilhite, and A. Malik. Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Analytical Chemistry. 69(19) (1997) 3889-3898. https://pubs.acs.org/doi/abs/10.1021/ac9703360.
[31] M. Yang, Z. R. Zeng, W. L. Qiu, and Y. L. Wang. Preparation and investigation of polymethylphenylvinylsiloxane-coated solid-phase 32 fibers using sol-gel technology. Chromatographia. 56 (2002) 73-80. https://link.springer.com/article/10.1007/BF02490250.
[32] J. F. Liu, G. B. Jiang, and J. Å. Jönsson. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry. 24 (2005) 20-27. https://www.sciencedirect.com/science/article/pii/S0165993604030614.
[33] J. F. Liu, N. Li, G. B. Jiang, J. M. Liu, J. Å. Jönsson, and M. J. Wen. Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography–flame ionization detection. Journal of Chromatography A. 1066 (2005) 27-32. https://doi.org/10.1016/j.chroma.2005.01.024. https://www.sciencedirect.com/science/article/abs/pii/S0021967305000932.
[34] F. Zhao, Y. Meng, and J. L. Anderson. Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. Journal of Chromatography A. 1208(1-2) (2008) 1-9. https://doi.org/10.1016/j.chroma.2005.01.024. https://www.sciencedirect.com/science/article/abs/pii/S002196730801399X.
[35] R. Germani, M. V. Mancini, N. Spreti, P. D. Profio, and G. Savelli. Cu(II) Extraction in Ionic Liquids and Chlorinated Solvents: Temperature Effect. Green and Sustainable Chemistry. 1 (2011) 155-164. https://doi.org/10.1016/j.chroma.2005.01.024. https://www.scirp.org/journal/paperinformation.aspx?paperid=8503.
[36] J. Zarzycki. Past and present of sol-gel science and technology. Journal of Sol-Gel Science and Technology. 8 (1997) 17-22. https://doi.org/10.1023/A:1026480424495.https://link.springer.com/article/10.1023/A:1026480424495.
[37] M. M. Collinson, Recent trends in analytical applications of organically modified silicate materials. TrAC Trends in Analytical Chemistry. 21 (2002) 31-39.https://doi.org/10.1016/S0165-9936(01)00125-X. https://www.sciencedirect.com/ science/article/pii/S016599360100125X.
[38] A. Ruivo, M. G. Ventura, M. D. R. Gomes da Silva, and C.A. T. Laia. Synthesis of gold nanoparticles in sol–gel glass porogens containing [bmim][BF4] ionic liquid. Journal of Sol-Gel Science and Technology. 68 (2013) 234-244. https://doi.org/10.1007/s10971-013-3159-6. https://link.springer.com/article/10.1007/s10971-013-3159-6.
[39] S. Merkle, K. Kleeberg, and J. Fritsche. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography. 2(3) (2015) 293-381. https://doi.org/10.3390/chromatography2030293.https://www.mdpi.com/2227-9075/2/3/293.
[40] S. M. A. Wahib, W. A. W. Ibrahim, and M. M Sanagi. New methyltrimethoxysilane-(3-mercaptopropyl)- trimethoxysilane coated hollow fiber-solid phase microextraction for hexanal and heptanal analysis. Malaysian Journal of Analytical Sciences. 20 (2015) 51-63. https://www.researchgate.net/profile/Wan-Aini-Wan-Ibrahim/publication/303127973_New_methyltrimethoxysilane-3-mercaptopropyl-_trimethoxysilane_coated_hollow_fiber-solid_phase_microextraction_for_hexanal_and_heptanal_analysis/links/586aee3f08ae329d621134da/New-methyltrimethoxysilane-3-mercaptopropyl-trimethoxysilane-coated-hollow-fiber-solid-phase-microextraction-for-hexanal-and-heptanal-analysis.pdf
[41] C. M. Kin, and T. G. Huat. Comparison of different types of coatings in headspace solid phase microextraction for the analysis of pesticides residues in vegetables and fruits. The Malaysian Journal of Analytical Sciences. 12 (2008) 444-450. https://www.ukm.my/mjas/v12_n2/Chai%20Mee%20Kin .pdf.
[42] C. Alves, C. Fernandes, A. J. Dos Santos Neto, J. C. Rodrigues, M. E. Costa Queiroz, and F. M. Lancas. Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. Journal of Chromatographic Science. 44(6) (2006) 340-346. https://doi.org/10.1093/chromsci/44.6.340. https://academic.oup.com/chromsci/article/44/6/340/373682.
[43] S. J. Shahtaheri, H. R. Heidari, F. Golbabaei, M. Alimohammadi, and A. R. Froshani. Solid Phase Microextraction for Trace Analysis of Urinary Benzene in Environmental Monitoring. Iranian Journal of Environmental Health Science &. Engineering. 3(3) (2006) 619-176. http://www.bioline.org.br/abstract?id=se06024&lang=en.