Carbon Monoxide Gas Sensor Based on ZrSe2 monolayer nanosheet
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیSoroush Karimi Khorrami 1 , Masoud Berahman 2 , Mojtaba Sadeghi 3
1 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad
University, Shiraz, Iran
2 - Department of electrical Eng., Graduate University of Advanced
Technology, Kerman, Iran
3 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad
University, Shiraz, Iran
الکلمات المفتاحية: Density functional theory, transition metal dichalcogenides, ZrSe2 nanosheet, CO gas molecule,
ملخص المقالة :
Recently, the semiconducting electronic
properties of different compounds of two-dimensional
(2D) materials have been explored. One of the most
important members of this family (ZrSe2; Zirconium
diselenide) is used to substitute the silicon in Nano
electronics because of its considerable bandgap.
Moreover, this material seems to have potential
application in sensing some toxic gases. In this research,
we have investigated the adsorption ability of ZrSe2
nanosheet structure when the CO and CO2 gas molecules
are applied to the nanosheet surface. The simulation
results show appropriate and considerable sensing
property of this structure in presence of CO gas molecule
with stable configuration and prominent changes in
amount of current after gas adsorption. The CO gas
molecule shows a stable and considerable adsorption on
the ZrSe2 structure which indicates that the ZrSe2
nanosheet structure is a proper case for gas sensing
applications. I-V calculations illustrate a selective
sensitivity to this especial gas molecule.
[1] https://www.cdc.gov/niosh/npg/npgd0105.html.
[2] https://pubmed.ncbi.nlm.nih.gov/29220732.
[3] https://www.ncbi.nlm.nih.gov/books/NBK153686.
[4] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnol. 8 (2013, Jul.), 497, doi: 10.1038/nnano.2013.100. Epub 2013 Jun 9.
[5] R. Tenne and A. Wold, Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell, Appl. Phys. Lett. 47 (1985, Jul.), 707, https://doi.org/10.1063/1.96066.
[6] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo- Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nature Nanotechnol. 9 (2014, Mar.), 262-267, https://doi.org/10.1038/nnano.2014.25.
[7] R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, Benchmarking nanotechnology for high-performance and low-power logic transistor applications, IEEE Trans. Nanotechnol. 4 (2005, Mar.), 153-158, DOI: 10.1109/TNANO.2004.842073.
[8] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang and A. F. Ismach, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano 7 (2013, Mar.), 2898-2926, https://doi.org/10.1021/nn400280c.
[9] S. Kumar, V. Pavelyev, P. Mishra, N. Tripathi, P. Sharma, F. Calle, A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors, Materials Science in Semiconductor Processing, Volume 107 (2020, Mar.), 104865, ISSN 1369-8001, https://doi.org/10.1016/j.mssp.2019.104865.
[10] A. Shokri, N. Salaami, Gas sensor based on MoS2 monolayer, Sensors and Actuators B: Chemical. 236 (2016, Jun.). Doi:10.1016/j.snb.2016.06.033.
[11] M. Moustafa, T. Zandt, C. Janowitz, and R. Manzke, Growth and band gap determination of the ZrSxSe2−x single crystal series, Phys. Rev. B 80 (2009, Jul.), 035206, doi: 10.1103/PhysRevB.80.035206.
[12] X. Zhao et al., Modulating the electronic and magnetic properties of monolayer ZrSe2 by doping, Superlattices and Microstructures, 120 (2018, Jun.), 659-669, https://doi.org/10.1016/j.spmi.2018.06.038.
[13] Q. Zhao, Y. Guo, Keyu Si, Z. Ren, J. Bai, and X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory, Phys. Status Solidi B (2017, May), 1700033, doi: 10.1002/pssb.201700033.
[14] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964, Nov.), B864, https://doi.org/10.1103/PhysRev.136.B864.
[15] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965, Nov.), A1133, https://doi.org/10.1103/PhysRev.140.A1133.
[16] V. McCann, V. I. Fal’ko, Landau-Level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96 (2006, Mar.), 086805, https://doi.org/10.1103/PhysRevLett.96.086805.
[17] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996, Oct.), 3865-3868, doi: 10.1103/PhysRevLett.77.3865.
[18] T. Niazkar, G. Shams, Z. soltani, Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2) orthorhombic Polymorphs: DFT Study, Journal of Optoelectronical Nanostructures, 6(3) ((2021, Summer), 93-116. doi: 10.30495/jopn.2021.28945.1237.
[19] M. Dehghan, S. Ahmadi, Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M=Be, Mg, and Ca): A DFT Study, Journal of Optoelectronical Nanostructures, 6(1) (2021, Winter), 1-20, doi: 10.30495/jopn.2021.4538.
[20] S. Fotoohi, S. Haji Nasiri, Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon, Journal of Optoelectronical Nanostructures (2019, Autumn) 4(4), 15-38, https://dorl.net/dor/20.1001.1.24237361.2019.4.4.2.6.
[21] S. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals, Journal of Optoelectronical Nanostructures (2017, Autumn) 2(4), 1-18, https://dorl.net/dor/20.1001.1.24237361.2017.2.4.1.1.
[22] H. Salehi, P. Amiri, R. zare Hasanabad, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds, Journal of Optoelectronical Nanostructures (2018, Spring) 3(2), 53-64, https://dorl.net/dor/20.1001.1.24237361.2018.3.2.5.8.