Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیAli Abdolahzadeh Ziabari 1 , Sahar Royanian 2 , Reza Yousefi 3 , Saleh Ghoreishi 4
1 - Department of Physics, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 - Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran
3 - Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran
4 - Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran
الکلمات المفتاحية: Surface Plasmon, FDTD, Al nanoparticles, CIGS, Light trapping,
ملخص المقالة :
CIGS solar cells are regarded to be one of the best thin film solar cells with
efficiencies up to 22.6%, which exceeds the current multicrystalline Si record efficiency
(21.9%). To make the promising CIGS solar cells more economic, reduction of costly In
and Ga elements through thinning of CIGS layer seems necessary. But, it causes the cell
performance degradation. This study is aimed to investigate the efficiency enhancement
of ultrathin CIGS solar cells by using of Al plasmonic nanoparticles. Plasmonic
nanoparticles can restrict, absorb, navigate or scatter the incident light. The role of
different location of Al nanoparticles within the active layer was studied through optical
and electrical simulation utilizing FDTD and DEVICE solvers of Lumerical software.
By using the spherical Au nanoparticles, the light absorption in the cell increased
drastically. The highest ç=15.31% was achieved for the designed ultrathin CIGS solar
cell decorated by Al nanoparticles located in the middle of the absorber layer.
[1] D. Jalalian, A. Ghadimi, A. Kiani Sarkaleh, Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells, J. Optoelectron. Nanostructures. 5(2) (2020) 65-78. Available: https://jopn.miau.ac.ir/article_4219.html
[2] A. Abdolahzadeh Ziabari, F. E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment, Sol. Energy Mater. Sol. Cells, 105 (2012) 249-262. Available: https://doi.org/10.1016/j.solmat.2012.05.014
[3] K. Ahmadi, A. Abdolahzadeh Ziabari, K. Mirabbaszadeh, S. Ahmadi, Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data, Superlattice Microst. 77 (2015) 25-34. Available: https://doi.org/10.1016/j.spmi.2014.10.024
Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic … * 29
[4] Y. Sefidgar, H. Rasooli Saghai, H. G. Khiabani Azar, Enhancing efficiency of two-band solar cells based on GaAs/InGaP, 4(2) (2019) 83-102. Available: https://jopn.miau.ac.ir/article_3480.html
[5] A. Abdolahzadeh Ziabari, N. Mohabbati Zindanlou, J. Hassanzadeh, S. Golshahi, A. Bagheri Khatibani, Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: influence of stabilizer and thickness, J. Alloys Compd. 842 (2020) 155741. Available: https://doi.org/10.1016/j.jallcom.2020.155741
[6] A. Abdolahzadeh Ziabari, A. Bagheri Khatibani, Optical properties and thermal stability of solar selective absorbers based on Co-Al2O3 cermets, 55(3) (2017) 876-885. Available: https://doi.org/10.1016/j.cjph.2017.02.015
[7] A. Abdolahzadeh Ziabari, Exploring low, moderate and heavy Al doping impacts on microstructure and optical attributes of nanostructured cadmium oxide thin films, Superlattice Microst. 72 (2014) 172-185. Available: https://doi.org/10.1016/j.spmi.2014.04.005
[8] A. Abdolahzadeh Ziabari, A. H. Refahi Sheikhani, R. Vatani Nezafat, K. Monsef Haghighidoust, Optical modeling and electrical properties of cadmium oxide nanofilms: developing a meta-heuristic calculation process model, J. Appl. Phys. 117 (2015) 135303. Available: https://doi.org/10.1063/1.4916720
[9] K. Ahmadi, A. Abdolahzadeh Ziabari, K. Mirabbaszadeh, A. Ahadpour Shal, Synthesis and characterization of ZnO/TiO2 composite core/shell nanorod arrays by sol-gel method for organic solar cell applications, Bul. Mat. Sci. 38 (2015) 617-623. Available: https:// doi.org/10.1007/s12034-015-0898-8
[10] M. A. Lahiji, A. Abdolahzadeh Ziabari, First-principle calculation of the elastic, band structure, electronic states, and optical properties of Cu-doped ZnS nanolayers, Physica B Condens. Matter. 501 (2016) 146-152. Available: https:// doi.org/10.1016/j.physb.2016.08.033
[11] M. Nilkar, F. E. Ghodsi, A. Abdolahzadeh Ziabari, Compositional evolution and surface-related phenomena effects in ZnS-SiO2 nanocomposite films, Appl. Phys. A, 118 (2015) 1377-1386. Available: https:// doi.org/10.1007/s00339-014-8892-3
[12] A. Abdolahzadeh Ziabari, S. M. Rozati, Investigation of the effect of band-edge nonparabolicity on the carrier transport in ITO thin films, 65 (2014) 487-490. Available: https:// doi.org/10.3938/jkps.65.487
30 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[13] M. A. Lahiji, A. Abdolahzadeh Ziabari, Ab-initio study of the electronic and optical traits of Na0.5Bi0.5TiO3 nanostructured thin film, J. Optoelectron. Nanostructures. 4(2) (2019) 47-58. Available: https://jopn.miau.ac.ir/article_3474.html
[14] M. Cheraghizade, Optoelectronic properties of PbS films: effect of carrier gas, J. Optoelectron. Nanostructures. 4(3) (2019) 47-58. Available: https://jopn.miau.ac.ir/article_3619.html
[15] H. Izadneshan, G. Solookinejad, Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications, J. Optoelectron. Nanostructures. 3(2) (2018) 19-28. Available: https://jopn.miau.ac.ir/article_2861.html
[16] Z. Dehghani Tafti, M. B. Zarandi, H. A. Bioki, Thermal annealing influence over optical properties of thermally evaporated SnS/CdS bilayer thin films, J. Optoelectron. Nanostructures. 4(1) (2019) 87-98. Available: https://jopn.miau.ac.ir/article_3387.html
[17] R. Yahyazadeh, Z. Hashempour, Numerical modeling of electronic and electrical characteristics of 0.3 0.7 AlGaN/GaN multiple quantum well solar cells, J. Optoelectron. Nanostructures. 5(3) (2020) 81-102. Available: https://jopn.miau.ac.ir/article_4406.html
[18] M. Amiri, A. Eskandarian, A. Abdolahzadeh Ziabari, Performance enhancement of ultrathin graded Cu(InGa)Se2 solar cells through modification of the basic structure and adding antireflective layers. J. Photon. Energy 10(2) (2020) 024504. Available: https://doi.org/10.1117/1.JPE.10.024504
[19] S. Royanian, A. Abdolahzadeh Ziabari, R. Yousefi, Efficiency enhancement of ultra–thin CIGS solar cells using bandgap grading and embedding Au plasmonic nanoparticles, Plasmonics 15 (2020) 1173–1182. Available: https://doi.org/10.1007/s11468-020-01138-2
[20] E. Ghahremanirad, S. Olyaee, M. Hedayati, The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells, Photonics 6(2) (2019) 37. Available: https://doi.org/10.3390/photonics6020037
[21] Lumerical Solutions, Inc. http://www.lumerical.com/tcad–products/fdtd/.
[22] Lumerical Solutions, Inc. http://www.lumerical.com/tcadproducts/device/
[23] E.D. Palik, in Handbook of Optical Constants of Solids, ed. By E.D. Palik (Academic Press, New York, 1998).
Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic … * 31
[24] W. Li, S. Xu, Y. Dai, P. Ma, Y. Feng, W. Li, H. Luo, C. Yang, Improvement of the crystallinity and efficiency of wide–gap CIGS thin film solar cells with reduced thickness, Mater. Lett. 244 (2019) 43–46. Available: https://doi.org/10.1016/j.matlet.2019.02.031
[25] K. R. Catchpole, A. Polman, Plasmonic solar cells. Opt. Express 16 (26) (2008) 21793. https://doi.org/10.1364/oe.16.021793
[26] M. Mirzaei, J. Hasanzadeh, A. Abdolahzadeh Ziabari, Efficiency enhancement of CZTS solar cells using Al plasmonic nanoparticles: the effect of size and period of nanoparticles, J. Electron. Mater. 49 (2020) 7168–7178. Available: https://doi.org/10.1007/s11664-020-08524-w
[27] M. Amiri, A. Eskandarian, A. Abdolahzadeh Ziabari, Performance improvement of ultra-thin CIGS solar cells with decrease in light loss by surface texturing, Indian J. Phys. (2020). Available: https://doi.org/10.1007/s12648-020-01888-z
[28] A. Mirkamali, K. K. Muminov, Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D, J. Optoelectron. Nanostructures. 2(1) (2017) 31-40. Available: https://jopn.miau.ac.ir/article_2198.html
[29] H. Izadneshan, V. Gremeno, G. Solookinejad, Fabrication of Cu(In,Ga)Se2 solar cells with In2S3 buffer layer by two stage process, J. Optoelectron. Nanostructures. 1(2) (2016) 47-56. Available: https://jopn.miau.ac.ir/article_2048.html
[30] S. M. S. Hashemi Nassab, M. Imanieh, A. Kamaly, The effect of doping and thickness of the layers on CIGS solar cell efficiency, J. Optoelectron. Nanostructures. 1(1) (2016) 9-24. Available: https://jopn.miau.ac.ir/article_1812.html