Temporal Nonlinear Dynamics of Plasmon-Solitons, a Duffing Oscillator-Based Approach
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکی
1 - Electrical engineering group, Urmia University of Technology
الکلمات المفتاحية: Plasmon-Soliton, Duffing Oscillator, Nonlinear Optical Modulation, Temporal Dynamics, Fano Resonance,
ملخص المقالة :
Plasmon-Solitons شبه ذراتی است که در نتیجه جفت شدن
حالت های پلاسمون و محلول های انفرادی حاصل می شود. این کوپلینگ می تواند به طور ذاتی تشدید شود تا بتواند
پلاسمون سلیتون ها را با محلی سازی بالا و طول انتشار زیاد تشکیل دهد. این مقاله
با پویایی غیرخطی زمانی پلاسمون-سلیتون ها در یک
موجبر پلاسمونیک سروکار دارد. معادله دافینگ به عنوان قسمت زمانی
معادله دامنه غیر خطی حاکم بر موجبر پلاسمونیک شناخته می شود. معادله دافینگ از نظر
تحلیلی برای رژیم کم خطی کم حل شده است. نشان داده شده است که
شکل موج نوسان ساز دافینگ به معنای پویایی غیرخطی زمانی پلاسمون-سلیتون ها است.
تبادل انرژی حالت های روشن و تاریک از نوع لورنتس باعث ایجاد یک Fano می شود
طنین بنابراین نشان داده شده است که فعل و انفعال سالیتون ها و تشکیل پلاسمون سولیتون
ها ذاتاً غیرخطی است. بر این اساس نشان داده شده است که تعدیل غیرخطی
سلاسمونهای پلاسمون از طریق تنظیم غیرخطی بودن
موجبر پلاسمونیک قابل دستیابی است . نتایج می تواند برای محققانی که قصد دارند راهنمای
موج های پلاسمونیک را با محلی سازی بالا و همچنین طول انتشار زیاد طراحی کنند ، جذاب باشد .
به طور خاص ، یک روش تعدیل تمام پلاسمونیک می تواند مورد بررسی قرار گیرد.
[1] Senthilnathan K, Porsezian K. Bright and dark spatial solitons in coupled photorefractive media. J.Mod. Opt. [Online] 51(3). (2004 Feb. 14) 15-21. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340408235533
[2] Babourina-Brooks E, Doherty A, Milburn GJ. Quantum noise in a nanomechanical duffing resonator. New. J. Phys. [Online] 10(10). (2008 Oct 31)105020. Available: https://iopscience.iop.org/article/10.1088/1367-2630/10/10/105020/meta
[3] Moon G, Jhe W, Noh HR. Duffing Oscillation in an Intensity-modulated Magneto-optical Trap: An Analytical Study for the (1+ 3) Atomic Energy Structure. J. Korean Phys. Soc. [Online] 58(5). (2011 May 13) 1105-1109. Available: https://www.jkps.or.kr/journal/view.html?doi=10.3938/jkps.58.1105
[4] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. [Online] 424(6950). (2003 Aug) 824-830. Available: https://www.nature.com/articles/nature01937
[5] Joly AG, Gong Y, El-Khoury PZ, Hess WP. Surface plasmon-based pulse splitter and polarization multiplexer. J. Phys. Chem. Lett. [Online] 9(21). (2018 Oct 11) 6164-61698. Available: https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b02643
[6] Singh SP, Tiwari NK, Akhtar MJ. Spoof Surface Plasmon-Based Coplanar Waveguide Sensor for Dielectric Sensing Applications. IEEE Sens. J. [Online] 20(1). (2019 Sep 23) 193-201. Available: https://ieeexplore.ieee.org/abstract/document/8846053
[7] Selvendran S, Susheel A, Tarun PV, Muthu KE, Raja AS. A novel surface plasmon based photonic crystal fiber sensor. Opt Quantum Electron. [Online] 52. (2020 Jun) 1-2. Available: https://link.springer.com/article/10.1007%2Fs11082-020-02403-8
[8] Zhang Y, Han Z. Experimental demonstration of spoof surface plasmon based THz antennas for huge electric field enhancement. Plasmonics. [Online] (2) (.2018 Apr;13) 531-535. Available: https://link.springer.com/article/10.1007/s11468-017-0540-2
[9] Xu L, Li F, Wei L, Zhou J, Liu S. Design of surface plasmon nanolaser based on MoS2. Appl. Sc. [Online] 8(11) (2018 Nov) 2110. Available: https://www.mdpi.com/2076-3417/8/11/2110
Temporal Nonlinear Dynamics of Plasmon-Solitons, a Duffing Oscillator-Based Approach * 97
[10] Mansuri M, Mir A, Farmani A. Numerical modeling of a nanostructure gas sensor based on plasmonic effect. Journal of Optoelectronical Nanostructures. 4(2) [Online] (2019 May 1) 29-44. Available: http://jopn.miau.ac.ir/article_3476_479.
[11] Lee DH, Lee MH. Efficient experimental design of a long-range gapped surface plasmon polariton waveguide for plasmonic modulation applications. IEEE Photonics J. [Online] 11(1) (2019 Jan) 241-250. Available: https://ieeexplore.ieee.org/abstract/document/8625489
[12] Abdolahzadeh Ziabari A, Royanian S, Yousefi R, Ghoreishi S. Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles. Journal of Optoelectronical Nanostructures. [Online] 5(4) (2020 Nov 1) 17-32. Available: http://jopn.miau.ac.ir/article_4506.html
[13] Amin R, Maiti R, Gui Y, Suer C, Miscuglio M, Heidari E, Khurgin JB, Chen RT, Dalir H, Sorger VJ. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Sci. Rep. [Online] 11(1). (2021 Jan 14) 1-2. Available: https://www.nature.com/articles/s41598-020-80381-3
[14] Surface plasmon amplification by stimulated emission of radiation (spaser). Stockman MI, Bergman DJ, inventors; Ramot. (2009 Aug 4.) United States patent US 7,569,188. [Online] Available: https://patents.google.com/patent/US7569188B2/en
[15] Klein M, Badada BH, Binder R, Alfrey A, McKie M, Koehler MR, Mandrus DG, Taniguchi T, Watanabe K, LeRoy BJ, Schaibley JR. 2D semiconductor nonlinear plasmonic modulators. Nat. Commun. [Online] 10(1) (2019 Jul 22) 1-7. Available: https://www.nature.com/articles/s41467-019-11186-w
[16] Yuan D, Wang J, Li Y, Ding P. A multi-wavelength SPASER based on plasmonic tetramer cavity. J. Opt. [Online] 21(11) (2019 Oct 7) 115001. Available: https://iopscience.iop.org/article/10.1088/2040-8986/ab46d5/meta
[17] Berini P. Highlighting recent progress in long-range surface plasmon polaritons: guest editorial. Adv. Opt. Photonics. [Online] 11(2) (2019 Jun 30) ED19-23. Available: https://www.osapublishing.org/aop/abstract.cfm?uri=aop-11-2-ed19
[18] Jing JY, Wang Q, Zhao WM, Wang BT. Long-range surface plasmon resonance and its sensing applications: A review. Opt. Lasers Eng. [Online] 112. (2019 Jan 1) 103-118. Available:
98 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
https://www.sciencedirect.com/science/article/abs/pii/S0143816618306365
[19] Abdulhalim I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics. [Online] 7(12). (2018 Nov 26) 1891-1916. Available: https://www.degruyter.com/document/doi/10.1515/nanoph-2018-0129/html
[20] Mikhailov SA. Influence of optical nonlinearities on plasma waves in graphene. ACS Photonics. [Online] 4(12). (2017 Dec 20) 3018-3022. Available: https://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00468
[21] Walasik W, Renversez G. Plasmon-soliton waves in planar slot waveguides. I. Modeling. Phys. Rev. A. [Online] 93(1). (2016 Jan 14) 013825. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.013825
[22] Salas AH. Exact solution to duffing equation and the pendulum equation. Appl. Math. Sci. 8(176). (2014) 8781-8789. Available: https://hal.archives-ouvertes.fr/hal-01356787/
[23] Scalora M, Vincenti MA, De Ceglia D, Cojocaru CM, Grande M, Haus JW. Nonlinear Duffing oscillator model for third harmonic generation. Opt Soc Am B. [Online] 32(10). (2015 Oct 1) 2129-2138. Available: https://www.osapublishing.org/josab/abstract.cfm?uri=josab-32-10-2129
[24] Sharif MA, Ashabi K. A Quasi-classical Model for Delineation of Dynamical States and Chaotic Maps in a Spaser. Plasmonics. [Online] 16. (2021) 97-105. Available: https://link.springer.com/article/10.1007/s11468-020-01269-6
[25] Sharif MA. Spatio-temporal modulation instability of surface plasmon polaritons in graphene-dielectric heterostructure. Physica E Low Dimens. Syst. Nanostruct. [Online] 105. (2019 Jan 1) 174-181. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947718304818
[26] Doi M, Sugiyama M, Tanaka K, Kawai M. Advanced LiNbO/sub 3/optical modulators for broadband optical communications. IEEE J. Sel. Top. Quantum Electron. [Online] 12(4). (2006 Aug 7) 745-750. Available: https://ieeexplore.ieee.org/abstract/document/1668118/
[27] Interferometric modulator for optical signal processing. Bulow JA. (1994 May 24.) United States patent US 5,315,370. [Online]. Available: https://patents.google.com/patent/US5315370A/en
Temporal Nonlinear Dynamics of Plasmon-Solitons, a Duffing Oscillator-Based Approach * 99
[28] Moftakharzadeh A, Afkhami Aghda B, Hosseini M. Noise Equivalent Power Optimization of Graphene-Superconductor Optical Sensors in the Current Bias Mode. Journal of Optoelectronical Nanostructures. [Online] 3(3) (2018 Sep 1) 1-2. Available: http://jopn.miau.ac.ir/article_3040.html
[29] Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y, Mei L, Tonelli M, Wang J. Broadband atomic-layer MoS 2 optical modulators for ultrafast pulse generations in the visible range. Opt.Lett. [Online] 42(3). (2017 Feb 1) 547-550.
Available: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-42-3-547
[30] Merolla JM, Mazurenko Y, Goedgebuer JP, Porte H, Rhodes WT. Phase-modulation transmission system for quantum cryptography. Opt. Lett. [Online] 24(2). (1999 Jan 15) 104-6. Available: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-24-2-104
[31] Urino Y, Noguchi Y, Noguchi M, Imai M, Yamagishi M, Saitou S, Hirayama N, Takahashi M, Takahashi H, Saito E, Okano M. Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate. Opt. Express [Online] 20(26). (2012 Dec 10) B256-B263. Available: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-26-B256&id=246439
[32] Jabbari M, Dehghan M, Darvish G, Ghaffari-miab M. Ultra-Compact Bidirectional Terahertz Switch Based on Resonance in Graphene Ring and Plate. Journal of Optoelectronical Nanostructures. [Online] 4(4) (2019 Dec 1) 99-112. Available: http://jopn.miau.ac.ir/article_3761.html
[33] Grinblat G, Zhang H, Nielsen MP, Krivitsky L, Berté R, Li Y, Tilmann B, Cortés E, Oulton RF, Kuznetsov AI, Maier SA. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation. Sci. Adv.[Online] 6(34). (2020 Aug 1) eabb3123. Available: https://advances.sciencemag.org/content/6/34/eabb3123.abstract
[34] Firby CJ, Elezzabi AY. Nonlinear optical modulation in a plasmonic Bi: YIG Mach-Zehnder interferometer, in Integrated Optics: Devices, Materials, and Technologies XXI International Society for Optics and Photonics. (2017 Feb 16) 1010617. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10106/1010617/Nonlinear-optical-modulation-in-a-plasmonic-Bi-YIG-Mach-Zehnder/10.1117/12.2252840.short
100 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
[35] Jia Y, Liao Y, Wu L, Shan Y, Dai X, Cai H, Xiang Y, Fan D. Nonlinear optical response, all optical switching, and all optical information conversion in NbSe 2 nanosheets based on spatial self-phase modulation. Nanoscale. [Online] (10). (2019;11) 4515-4522. Available: https://pubs.rsc.org/en/content/articlelanding/2019/nr/c8nr08966c/unauth#!divAbstract
[36] Xie ZT, Wu J, Fu HY, Li Q. Tunable Electro-and All-Optical Switch Based on Epsilon-Near-Zero Metasurface. IEEE Photonics J. [Online] 12(4). (2020 Jul 20) 1-10. Available: https://ieeexplore.ieee.org/abstract/document/9144401/
[37] Gorbach AV. Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A. [Online] 87(1). (2013 Jan 25) 013830. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.013830
[38] Hilgevoord J. The uncertainty principle for energy and time. Am. J. Phys. [Online] 64(12). (1996 Dec) 1451-1456. Available: https://aapt.scitation.org/doi/abs/10.1119/1.18410
[39] Goyal A, Raju TS, Kumar CN. Lorentzian-type soliton solutions of ac-driven complex Ginzburg–Landau equation. Appl. Math. Comput. [Online] 218(24). (2012 Aug 15) 11931-11927. Available: https://www.sciencedirect.com/science/article/abs/pii/S0096300312005796
[40] Golovinski PA, Yakovets AV, Astapenko VA. Linear build-up of Fano resonance spectral profiles. Appl. Phys. B. [Online] 124(6). (2018 Jun ) 1-8. Available: https://link.springer.com/article/10.1007/s00340-018-6983-0
[41] Krasavin AV, Vo TP, Dickson W, Bolger PM, Zayats AV. All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano. Lett. [Online] 11(6). (2011 Jun 8) 2231-2235. Available: https://pubs.acs.org/doi/abs/10.1021/nl200255t
[42] Golovinski PA, Yakovets AV, Khramov ES. Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem. arXiv preprint arXiv:1711.02498 [Online] (2017 Nov 7.) Available: https://arxiv.org/abs/1711.02498
[43] Jafari M. Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method. Journal of Optoelectronical Nanostructures. [Online] 1(2) (2016 Sep 16) 57-68. Available: http://jopn.miau.ac.ir/article_2049_0.html
Temporal Nonlinear Dynamics of Plasmon-Solitons, a Duffing Oscillator-Based Approach * 101
[44] Ávalos-Ovando O, Besteiro LV, Wang Z, Govorov AO. Temporal plasmonics: Fano and Rabi regimes in the time domain in metal nanostructures. Nanophotonics. [Online] 9(11). (2020 Aug 18) 3587-3595. Available: https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0229/html
[45] Boyd RW. Nonlinear optics. Academic press; 2020 Mar 30.