Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیShahram Rafiee Rafat 1 , Zahra Ahangari 2 , Mohammad Mahdi Ahadian 3
1 - Department of Electronic, Faculty of Electrical Engineering, Yadegar- e- Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
2 - Department of Electronic, Faculty of Electrical Engineering, Yadegar- e- Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.
3 - Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Avenue, 14588-89694 Tehran, Iran
الکلمات المفتاحية: Efficiency, Perovskite Solar Cell, Hole Transport Layer, Electron transport layer, SCAPS-1D, Nanorods,
ملخص المقالة :
Organic-inorganic halide perovskite thin film perovskite solar cells are gaining much attention, in recent years. Designing proper electron transport layer (ETL) and hole transport layer (HTL) with high quality to achieve devices with higher efficiency are fundamental. One dimensional (1D) nanostructures are newly introduced materials with high mobility and low recombination rate, which may improve the device performance. In this paper, 1D ZnO nanorods (ZnO-NRs) as well as planar TiO2 are considered as the ETL of the device and their electrical performance are compared with different HTL materials in Sn- and Pb- perovskite. In addition, impact of critical design parameters including absorber thickness, interface defect density, back contact electrode materials on the performance of the device are comprehensively assessed. In this work, the simulations have been carries out using a 1D Solar Cell Capacitance Simulator (SCAPS-1D). The results show that in Sn- perovskite, ZnO-NRs has superior performance in comparison with TiO2 with maximum photon conversion efficiency (PCE) of 16.7 % and short circuit current density of 30.21(mA/cm2). However, in terms of Pb-perovskite planar TiO2 has given the best performance with PCE of 19.6%. The results in this paper pave the way for introducing inexpensive high performance solar cell.
[1] L. Hernández-Callejo, S. Gallardo-Saavedra, V. Alonso-Gómez, A review of photovoltaic systems: Design, operation and maintenance, J. Sol. Energy., 188 (Aug. 2019) 426-40.
[2] M. Cheraghizade, Optoelectronic properties of PbS films: Effect of carrier gas, Journal of Optoelectronical Nanostructures, 4 (2) (May 2019) 1-12.
[3] H. Hashemi Madani, M. R. Shayesteh, M. R. Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures., 6 (1) (Jan. 2021) 71-86.
[4] A. Abdolahzadeh Ziabari, S. Royanian, R. Yousefi, S. Ghoreishi, Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles, Journal of Optoelectronical Nanostructures., 5 (4) (Nov. 2020) 17-32.
[5] J. Tian, Q. Xue, Q. Yao, N. Li, CJ. Brabec, HL. Yip, Inorganic halide perovskite solar cells: progress and challenges, Adv. Energy Mater., 10 (23) (Jun 2020) 2000183.
[6] D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: materials, methods, and future perspectives, J. Nanomater., (Jan. 2018) 1-15.
[7] A. Ghadimi, A. Kiani Sarkaleh, Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells, Journal of Optoelectronical Nanostructures., 5 (2) (May 2020) 165-78.
[8] H. Pan, X. Zhao, X. Gong, H. Li, N. H. Ladi, X. L. Zhang, W. Huang, S. Ahmad, L. Ding, Y. Shen, M. Wang, Advances in design engineering and merits of electron transporting layers in perovskite solar cells, Mater. Horiz., 7 (9) (Jun 2020) 2276-91.
[9] G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem. A, 4 (11) (Jan. 2016) 3970-90.
[10] W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Hole‐transporting materials in inverted planar perovskite solar cells, Adv. Energy Mater., 6 (17) (Sep. 2016) 1600474.
[11] S. M. Hashemi Nassab, M. Imanieh, A. Kamaly, The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency, Journal of Optoelectronical Nanostructures., 1 (1) (Jun 2016) 9-24.
[12] A. Mirkamali, Numerical simulation of CdS/CIGS tandem multi-junction solar cells with AMPS-1D, Journal of Optoelectronical Nanostructures, 2 (1) (Jan. 2017) 31-40.
[13] X. Sallenave, M. Shasti, E. H. Anaraki, D. Volyniuk, J. V. Grazulevicius, S. M. Zakeeruddin, A. Mortezaali, M. Grätzel, A. Hagfeldt, G. Sini, Interfacial and bulk properties of hole transporting materials in perovskite solar cells: Spiro-MeTAD versus spiro-OMeTAD, J. Mater. Chem. A, 8 (17) (Apr. 2020) 8527-8539.
[14] Y. Yang, M. T. Hoang, D. Yao, N. D. Pham, V. T. Tiong, X. Wang, H. Wang, Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells, J. Mater. Chem. A, 8 (25) (Jun 2020) 12723-12734.
[15] M. M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis‐less planar perovskite solar cell (21.4%) with enhanced open‐circuit voltage and stability, Adv. Energy Mater., 8 (23) (Aug. 2018) 1800794.
[16] Y. Chen, Q. Meng, L. Zhang, C. Han, H. Gao, Y. Zhang, H. Yan, SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress, J. Energy Chem., 35 (Aug. 2019) 144-167.
[17] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells, Adv. Funct. Mater., 28 (35) (Aug. 2018) 1802757.
[18] F. Anwar, R. Mahbub, S. S. Satter, S. M. Ullah, Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance, Int. J. Photoenergy, (Jan. 2017) 1-9.
[19] D. K. Jarwal, A. K. Mishra, A. Kumar, S. Ratan, A. P. Singh, C. Kumar, B. Mukherjee, S. Jit. Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar cells, Superlattices Microstruct., 140 (Apr. 2020)106463.
[20] C. Li, S. Hou, Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application, MRS Online Proceedings Library (OPL), 1805 (Aug. 2015) mrss15–2124440.
[21] Q. Zhang, S. Hou, C. Li, Titanium dioxide-coated zinc oxide nanorods as an efficient photoelectrode in dye-sensitized solar cells, Nanomaterials., 10 (8) (Aug. 2020) 1598.
[22] A. M. Elseman, M. S. Selim, L. Luo, C. Y. Xu, G. Wang, Y. Jiang, D. B. Liu, L. P. Liao, Z. Hao, Q. L. Song, Efficient and Stable Planar n‐i‐p Perovskite Solar Cells with Negligible Hysteresis through Solution‐Processed Cu2O Nanocubes as a Low‐Cost Hole‐Transport Material, Chem. Sus. Chem., 12 (16) (Aug. 2019) 3808-3816.
[23] M. Shasti, A. Mortezaali, Numerical Study of Cu2O, SrCu2O2, and CuAlO2 as Hole‐Transport Materials for Application in Perovskite Solar Cells, Phys. Status Solidi A, 216 (18) (Sep. 2019) 1900337.
[24] L. C. Chen, C. C. Chen, K. C. Liang, S. H. Chang, Z. L. Tseng, S. C. Yeh, C. T. Chen, W. T. Wu, C. G. Wu, Nano-structured CuO-Cu2O complex thin film for application in CH3NH3PbI3 perovskite solar cells, Nanoscale Res. Lett., 11 (1) (Dec. 2016) 1-7.
[25] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films, Sci. Rep., 4 (1) (Feb. 2014)1-8.