Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیSomayeh Fotoohi 1 , Saeed Haji Nasiri 2
1 - Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2 - Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran
الکلمات المفتاحية: DFT, Key words: Graphdiyne, vacancy defects,
ملخص المقالة :
Spin-polarized electronic and transport properties of Armchair Graphdiyne
Nanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations for
double vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibrium
Green’s function (NEGF) combined with density functional theory (DFT).
The results demonstrate that the A-GDYNR with the SV has the lowest formation
energy and the most energetically favorable. The SV induces a 2.08 μB magnetic
moment while the DV2 possess no magnetism into A-GDYNR. Analyzing the band
structures shows that the perturbation in A-GDYNR caused by the SV, DV1 and MV
breaks the degeneracy and appears new bands around the Fermi level which indicate a
strong spin splitting. Moreover, using density of states (DOS) analysis, it is illustrated
that the appeared flat bands correspond to the localized states which mainly contribute
by the carbon atoms near the vacancies. The calculated current-voltage characteristics
for A-GDYNR with the SV, DV1, and MV reveal that the spin degeneracy is obviously
broken. As well, a high spin-filtering efficiency around 90% is found at the bias voltage
of 0.3V for A-GDYNR with the SV. Our findings illustrate that we can obtain AGDYNRs
with especial magnetic properties by removing carbon atoms from AGDYNR.
[1] M. Ghorbanzadeh Ahangari, Effect of defect and temperature on the mechanical and electronic properties of graphdiyne: A theoretical study, Physica E 66, (2017, Feb.), 140-147.
Available: https://www.sciencedirect.com/science/article/pii/S1386947714003592
[2] H. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures 3(4), (2018, autumn), 45-58.
Available: http://jopn.miau.ac.ir/article_3259_fd0b0ef6f20c392b449ca69ad1d2f918.pdf
[3] A. Abdikian, G. Solookinejad, Z. Safi, Electrostatics Modes in Mono-Layered Graphene, Journal of Optoelectronical Nanostructures 1(2), (2016, summer), 1-8.
Available:http://jopn.miau.ac.ir/article_2044_8b18c60167baa91a0369f64730d82f40.pdf
[4] H. Faezinia, M. Zavvari, Quantum modeling of light absorption in graphene based photo-transistors, Journal of Optoelectronical Nanostructures 2(1), (2017, winter), 9-20.
Available:http://jopn.miau.ac.ir/article_2196_127072bb11b75037590ab77092f278c6.pdf
[5] G. Li, Y. Li, H. Liu, Y. Guo, Y. Lia and D. Zhua, Architecture of graphdiyne nanoscale films, Chemical Communication 46(19), (2010), 3256-3258.
Available:https://pubs.rsc.org/en/content/articlelanding/2010/cc/b922733d#!divAbstract
[6] L. Lin, H. Pan, Y. Chen, X. Song, J. Xu, H. Liu, Sh. Tang, Y. Du, N. Tang, Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine, Carbon 143, (2019, Mar.), 8-13.
Available: https://www.sciencedirect.com/science/article/pii/S0008622318309126
[7] Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du and N. Tang, Intrinsic magnetism of graphdiyne, Applied Physics Letters 111(3), (2017, Jul.), 033101-5.
Available: https://aip.scitation.org/doi/abs/10.1063/1.4993916?journalCode=apl
[8] S. Fotoohi, M. K. Moravvej-Farshi, R. Faez, Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers, Applied Physics A 116(4), (2014, Sep.), 2057-2063.
Available: https://link.springer.com/article/10.1007/s00339-014-8400-9
[9] M. Long, L. Tang, D. Wang, Y. Li, Zh. Shuai, Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions, ACS-Nano 5(4), (2011, Mar.), 2593-2600.
Available: https://pubs.acs.org/doi/10.1021/nn102472s
[10] X. Chen, D. Fang, Y. Zhang, B. Gong and Sh. Zhang, Novel electronic transport of zigzag graphdiyne nanoribbons induced by edge states, EPL (Europhysics Letters) 107(5), (2014, Aug.), 1-6.
Available: https://iopscience.iop.org/article/10.1209/0295-5075/107/57002
[11] Ch. Ge, J. Chen, Sh. Tang, Y. Du, and N. Tang, Review of the Electronic, Optical, and Magnetic Properties of Graphdiyne: From Theories to Experiments, ACS Applied Material Interfaces 11(3), (2019, Jan.), 2707-2716.
Available: https://www.ncbi.nlm.nih.gov/pubmed/29701448
[12] Sh. Zhang, H. Du, J. He, Ch. Huang, H. Liu, G. Cui and Y. Li, Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage, ACS Applied Materials & Interface 8(13), (2016, Apr.), 8467-8473.
Available: https://www.ncbi.nlm.nih.gov/pubmed/26998614
[13] M. Zhang, H. Sun, X. Wang, H. Du, J. He, Y. Long, Y. Zhang, Ch. Huang, Room-Temperature Ferromagnetism in Sulfur-Doped Graphdiyne Semiconductors, Journal of Physical Chemistry 123(8), (2019), 5010-5016.
Available: https://pubs.acs.org/doi/10.1021/acs.jpcc.8b10507
[14] Zh. Feng, Y. Ma, Y. Li, R. Li, J. Liu, H. Li, Y. Tang, X. Dai, Importance of heteroatom doping site in tuning the electronic structure and magnetic properties of graphdiyne, Physica E 114, (2019, Oct.), 1-9.
Available: https://www.sciencedirect.com/science/article/pii/S1386947719305831
[15] Zh. Zhe, L. Qun, W. Xuanmin Zhu, Modulating the electronic properties of graphdiyne nanoribbons, Carbon 66, (2014, Jan.), 504-510.
Available: https://www.sciencedirect.com/science/article/pii/S0008622313008804
[16] X. Chen, P. Gao, L. Guo, Y. Wen, Y. Zhang, Sh. Zhang, Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne, Journal of Physics and Chemistry of Solids 105, (2017, Jun.), 61-65.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0022369716312495
[17] M. Zhang, X. Wang, H. Sun, N. Wang, Q. Lv, W. Cui, Y. Long and Ch. Huang, Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen, Scientific Reports 7, (2017), 1-10.
Available: https://www.nature.com/articles/s41598-017-11698-9
[18] B. Bhattacharya, N. Bedamani Singh and Utpal Sarkar, Tuning the magnetic property of vacancy-defected graphyne by transition metal absorption, AIP Conference Proceedings 1665, (2015), 0500661-3.
Available: https://aip.scitation.org/doi/10.1063/1.4917707
[19] M. Valencia, M. J. Caldas, Vacancy in graphene: insight on magnetic properties from theoretical modeling, Physical Review B 96, (2017, Apr.), 1254311-9.
Available: https://arxiv.org/abs/1704.01906
[20] B. Kang, H. Ai, J. Yong Lee, Single-Atom Vacancy Induced Changes in Electronic and Magnetic Properties of Graphyne, Carbon 116, (May, 2017), 113-119.
Available: https://www.sciencedirect.com/science/article/pii/S0008622317300787
[21] S. Fotoohi, S. Haji-Nasiri, Spin-dependent electronic transport properties of transition metal atoms doped ƒ؟-armchair graphyne nanoribbons, Physica E 98, (2018, Apr.), 159-167.
Available: https://www.sciencedirect.com/science/article/pii/S1386947717311980
[22] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter 14(11), (2002, Mar.), 2745-2779.
Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/11/302/meta
[23] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18), (1996, Oct.), 3865-3868.
Available: https://www.ncbi.nlm.nih.gov/pubmed/10062328
[24] N. Troullier and J. Martins, A straightforward method for generating soft transferable pseudopotentials, Solid State Communication 74, (1990, May), 613-616.
Available: https://www.sciencedirect.com/science/article/pii/0038109890906866
[25] S. Kim, Jin Yong Lee, Doping and vacancy effects of graphyne on SO2 adsorption, Journal of Colloid and Interface Science 493, (2017, May), 123-129.
Available: https://www.ncbi.nlm.nih.gov/pubmed/28088564
[26] J. Yun, Y. Zhang, M. Xu, K. Wang, Zh. Zhang, Effect of single vacancy on the structural, electronic structure and magnetic properties of monolayer graphyne by first-principles, Materials Chemistry and Physics 182, (2016, Jul.), 439-444.
Available:https://www.researchgate.net/publication/305630814_Effect_of_single_vacancy_on_the_structural_electronic_structure_and_magnetic_properties_of_monolayer_graphyne_by_first-principles
[27] S. GolafroozShahri, M. R. Roknabadi, R. Radfar, Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations, Journal of Magnetism and Magnetic Materials 443, (2017, Dec.), 96-103.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0304885317308028
[28] B. Kang, H. Shi, F Wang, J Yong Lee, Importance of doping site of B, N, and O in tuning electronic structure of graphynes, Carbon 105, (2016, Apr.), 156-162.
Available:https://www.researchgate.net/publication/301319525_Importance_of_doping_site_of_B_N_and_O_in_tuning_electronic_structure_of_graphynes
[29] C. Fiolhais, F. Nogueira, M. Marques, A Primer in Density Functional Theory, 1st ed., Springer, Heidelberg, 2003, 100-138.
Available: https://link.springer.com/book/10.1007/3-540-37072-2
[30] S. Datta, Quantum Transport: Atom to Transistor, 2nd ed., Cambridge, Cambridge University Press, 2005, 183-216.
Available:https://www.amazon.com/Quantum-Transport-Transistor-Supriyo-Datta/dp/0521631459
[31] L. Li, S. Reich, and J. Robertson, Defect energies of graphite: Density-functional calculations, Physical Review B 72, (2005, Nov.), 1841091-10.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.184109
[32] Sh. Abdulkader Tawfik, X. Y. Cui, S. P. Ringer and C. Stampfl, Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon, Physical Chemistry Chemical Physics 18(24), (2016), 16224-16228.
Available:https://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp01601d#!divAbstract
[33] M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gomez-Rodr.guez, Missing Atom as a Source of Carbon Magnetism, Physical Review Letters 104, (2010, Mar.), 0968041- 0968044.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.096804
[34] B. Kang, H. Ai , J. Yong Lee, Single-atom vacancy induced changes in electronic and magnetic properties of graphyne, Carbon 116, (2017, May), 113-119.
Available: https://www.sciencedirect.com/science/article/pii/S0008622317300787
[35] S. Wu, Y. Yuan, H. Ai, J. Yong Lee, and B. Kang, Effects of Double-atom Vacancy on the Electronic Properties of Graphyne: A DFT Investigation, Physical chemistry chemical physics 35, (2018), 1-6.
Available:https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp03359e#!divAbstract