Ultra-Compact Bidirectional Terahertz Switch Based on Resonance in Graphene Ring and Plate
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیMasoud Jabbari 1 , Mehdi Dehghan 2 , Mohammad kazem m moravvej farshi 3 , Ghafar Darvish 4 , Mohsen Ghaffari-miab 5
1 - Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
3 - School of electrical and computer
engneering,tarbiat modares university
4 - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
5 - School of Electrical and Computer Engineering, Tarbiat Modares University
الکلمات المفتاحية: Graphene, Bidirectional Switch, Resonance, Chemical Potential,
ملخص المقالة :
In this paper, we present a switch based on coupling and resonance in the
graphene plate and rings operating at 10 THz. This structure consists of several layers of
Hexagonal Boron Nitride (hBN), SiO2 and P+Si, such that graphene plates and rings are
inside the hBN layer. The terahertz wave is incident from the upper part of the switch
and Surface Plasmons (SPs) are excited by the grating in the structure on the graphene
plate beneath the nano-aperture and moves towards the ports available on the left and
right of the switch. At first, at the certain applied voltage, the SPs cross the left port and
this port is ON. With the increase in voltage and the change in the chemical potential,
switching occurs and the SPs exit from the right and this port is ON while the left port
turns OFF. The extinction ratio in this structure is 18dB and the size of the structure is
1μm. Aforementioned benefits make this switch the best choice for using in integrated
optical circuits.
[1] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Terahertz semiconductor heterostructure laser, Nature, 417 (2002) 156–159.
Available: https://www.nature.com/articles/417156a.
[2] R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, GaAs/Al0.15Ga0.85 As terahertz quantum cascade lasers with doublephonon resonant depopulation operating up to 172 K, Appl. Phys. Lett., 97 (131111) (2010).
Available: https://aip.scitation.org/doi/10.1063/1.3496035.
[3] M.A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, High-temperature operation of terahertz quantum cascade laser sources, IEEE J. Select. Topics Quantum Electron., 15(3) (2009) 952–967.
Available: https://ieeexplore.ieee.org/document/4912319.
[4] Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme, IEEE Trans. Terahertz Sci. Technol., 2(1) (2012) 83–92.
Available: https://ieeexplore.ieee.org/document/6111503.
[5] G. Z. Liang, H. K. Liang, Y. Zhang, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers, Appl. Phys. Lett., 102 (031119) (2013).
Available: https://aip.scitation.org/doi/10.1063/1.4789535.
[6] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, A single-photon detector in the far-infrared range, Nature, 403 (2000) 405–407, Available: https://www.nature.com/articles/35000166.
[7] Denis A. Bandurin et al, Resonant terahertz detection using graphene plasmons, Nature Communications, 9(5392) (2018).
Available: https://www.nature.com/articles/s41467-018-07848-w.
[8] A. Suziedelis, J. Gradauskas, S. Asmontas, G. Valusis, and H. G. Roskos , Giga- and terahertz frequency band detector based on an asymmetrically necked n-n+ - GaAs planar structure, Journal of Applied Physics, 93(5) (2003), Available: https://aip.scitation.org/doi/10.1063/1.1536024.
[9] Hamid Faezinia, Mahdi Zavvari, Quantum modeling of light absorption in graphene based photo-transistors, JOPN, 2(1) (2017) 9-20.
Available: http://jopn.miau.ac.ir/article_2196.html.
[10] Hou-Tong Chen, Willie J. Padilla, Michael J. Cich, Abul K. Azad, Richard D. Averitt and Antoinette J. Taylor , A metamaterial solid-state terahertz phase modulator, Nature Photonics 3 (2009) 148-151.
Available: https://www.nature.com/articles/nphoton.2009.3.
[11] Sheng Qu, Congcong Ma & Hongxia Liu, Tunable graphene based hybrid plasmonic modulators for subwavelength confinement, Scientific Reports, 7(5190) (2017).
Available: https://www.nature.com/articles/s41598-017-05172-9.
[12] Baohu Huang, Weibing LU, Zhenguo Liu, and Siping Gao, Low-energy high-speed plasmonic enhanced modulator using graphene, Optics Express, 26(6) (2018) 7358-7367.
Available: https://www.osapublishing.org/oe/abstract.cfm?URI=oe-26-6-7358.
[13] Jin Tao, Bin Hu, Xiao Yong He, and Qi Jie Wang, Tunable Subwavelength Terahertz Plasmonic Stub Waveguide Filters, IEEE Transaction on Nanotechnology, 12(6) (2013) 1191-1197.
Available: https://ieeexplore.ieee.org/abstract/document/6626633.
[14] Bin Shi, Wei Cai, Xinzheng Zhang, Yinxiao Xiang, Yu Zhan, Juan Geng, Mengxin Ren and Jingjun Xu, Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene, Scientific Reports, 6(26796) (2016), Available: https://www.nature.com/articles/srep26796.
[15] Hong-Ju Li, Ling-Ling Wang, Bin Sun, Zhen-Rong Huang, and Xiang Zhai, Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities, Journal of Applied Physics, 116(22) (2014) 224505, Available: https://aip.scitation.org/doi/full/10.1063/1.4903965.
[16] Mehdi Dehghan, Mohammad Kazem Moravvej-Farshi, Mohsen Ghaffari-Miab, Masoud Jabbari and Ghafar Darvish, Ultra-compact Spatial
Terahertz Switch Based on Graphene Plasmonic-Coupled Waveguide, Plasmonics, 1-11 (2019).
Available: https://link.springer.com/article/10.1007/s11468-019-00921-0.
[17] M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, Graphene-based plasmonic force switch, Applied Physics Letters, 108(111105) (2016), Available: https://aip.scitation.org/doi/10.1063/1.4944332.
[18] Ognjen Ilic, Nathan H. Thomas, Thomas Christensen, Michelle C. Sherrott, Marin Soljačić,Austin J. Minnich, Owen D. Miller and Harry A. Atwater, Active Radiative Thermal Switching with Graphene Plasmon Resonators, ACS Nano, 12 (3) (2018) 2474–2481.
Available: https://pubs.acs.org/doi/10.1021/acsnano.7b08231.
[19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696) (2004) 666-669.
Available: https://science.sciencemag.org/content/306/5696/666.
[20] Qiaoliang Bao and Kian Ping Loh, Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices, ACS Nano, 6(5) (2012) 3677–3694.
Available: https://pubs.acs.org/doi/10.1021/nn300989g.
[21] Maryam Hojatifar, Peyman Sahebsara, Tight- binding study of electronic band structure of anisotropic honeycomb lattice, JOPN, 1(3) (2016) 17-26.
Available: http://jopn.miau.ac.ir/article_2190.html.
[22] D. Kaplan, G. Recine, and V. Swaminathan, Electrically dependent bandgaps in graphene on hexagonal boron nitride, Applied Physics Letters, 104(133108) (2014).
Available: https://aip.scitation.org/doi/abs/10.1063/1.4870769?journalCode=apl.
[23] Hanson G.W., Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys., 103, (6) (2008) 1–18, Available: https://aip.scitation.org/doi/full/10.1063/1.2891452.
[24] P.-Y. Chen and A. Al`u, Atomically thin surface cloak using graphene monolayers, ACS Nano, 5 (2011) 5855–5863.
Available: https://pubs.acs.org/doi/abs/10.1021/nn201622e.
[25] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator, Nature 474 (2011) 64–67.
Available: https://www.nature.com/articles/nature10067.
[26] Hadi Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, JOPN, 3(4) (2018) 45-58.
Available: http://jopn.miau.ac.ir/article_3259.html.
[27] Zhu B., Ren G., Zheng S., Lin Z., Jian S., Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices, Opt. Express, 21 (14) (2013) 17089–17096.
Available: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-14-17089.
[28] Ooi K.J.A., Chu H.S., Ang L.K., Bai P., Mid-infrared active graphene nanoribbon plasmonic waveguide devices, J. Opt. Soc. Am. B, 30, (12), (2013) 3111.
Available: https://www.osapublishing.org/josab/abstract.cfm?uri=josab-30-12-3111.
[29] X. Gu, I-T. Lin, J.-M. Liu, Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures, Appl. Phys. Lett. 103 (7) (2013) 071103, Available: https://aip.scitation.org/doi/10.1063/1.4818660.