First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیHamdollah Salehi 1 , Firoozeh Anis Hoseini 2
1 - Department of Physics, Faculty of Science,ShahidChamran University,of
Ahvaz,Ahvaz,Iran
2 - Department of Physics, Faculty of Science,ShahidChamran University,of
Ahvaz,Ahvaz,Iran
الکلمات المفتاحية: Energy Bands Structure, Mercury Selenide, Pseudopotential, Quantum Espresso. Density Functional Theory,
ملخص المقالة :
In this paper, the structural parameters, energy bands structure, density of
states and charge density of HgSe in the Zincblende(B3) phase have been investigated.
The calculations have been performed using the Pseudopotential method in the
framework of density functional theory (DFT) by Quantum Espresso package. The
results for the electronic density of states (DOS) show that the band gap for HgSe is
zero. The obtained energy bands structure for HgSe show that the lowest conduction
band minimum and the top of the valence band are degenerate at the center of Brillouin
zone (Г),and this compound is a zero-gap material or semimetal. Calculation of electron
charge density in zincblende phase in (110) plane show that this compound has ionic
and covalent bond simultaneously. The theoretical calculated optical properties and
energy Loss (EEL) spectrum yield a static refractive index of4.37and a plasmon energy
of 22.83eV for cubic phase. This calculation are in good agreement with the other
theoretical and experimental values.
[1] L. Jiajun, Z. Minghua, L. Wenquan, Tiemannite from a micro-disseminated
gold deposit in Qiongmo, J. Chengdu Institute of Technology. 23 (2), (1996)
21-28.
http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG602.003.htm
[2] J. Stolpe, O. Portugal, N. Puhlmann, H. –U. Mueller, Intra and inter-band
transitions in HgSe in magagauss fields, J. Phys. B 294, (2001) 459-462.
https://www.sciencedirect.com/science/article/pii/S0921452600006992
[3] V. Venkasamy, M. K. Mathe, S. M. Cox, U. Happek, J. L. Stickney,
Optimization Studies of HgSe thin film deposition by electrochemical atomic
layer epitaxy, J. Electrochemical Acta. 51, (2006) 4347-4351.
https://www.sciencedirect.com/science/article/pii/S0013468605013927
[4] A. Delin, T. Kluner, Exitation Spectra and ground-state properties from
density-functional theory for the inverted bandstructure systems β-HgS,
HgSe and HgTe, Phys. Rev. B 66, (2002) 1-8.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.035117
[5] M. K. Mathe, S. M. Cox, V. Venkatasamy, U. Happek, J. L. Stickney,
Formation of HgSe thin films using Electrochemical Atomic Layer Epitaxy,
J. Electrochemical Society. 152(11), (2005) 751-755.
http://jes.ecsdl.org/content/152/11/C751.short
[6] T. Mahalingam, A. Kathalingam, Electrodeposition and characterization of
HgSe thin films, J. Materials Characterization. 58, (2007) 735-739.
https://www.sciencedirect.com/science/article/pii/S1044580306003494
[7] A. Mujica, A. Rubio, A. Munoz, R. J. Needs, High- pressure phases of
group-IV, III-V, and II-VI compounds, Reviews of modern physics, vol. 75,
(2003) 863-913.
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.863
[8] F.EL.Haj Hassan, B.I.Shafaay ,H.meradij , S Ghemid, H Belkhir and M
.Korek, Ab initio study of fundamental properties of HgSe ,HgTe and their
HgSexTe1−x alloys ”Phys.Scr.84, (2011) 065601-065607.
https://www.researchgate.net/profile/F_El_Haj_Hassan/publication/2583250
74
[9] M. N. Secuk, M. Aycibin, B. Erdinc, S. E. Gulebaglan, E. K. Dogan,H.
Akkus “Ab initio calculation of structural, electronic, optical, dynamic and
thermodynamic properties of HgTe and HgSe “American Journal of
Condensed Matter Physics , 4(1), (2014) 13-19.
https://www.researchgate.net/profile/Mehmet_Secuk/publication/265166804
[10] Http://www.quantum-espresso.org.
[11] S. Ahmadi and M.H. Ramezani . The structural and density state
calculationof Boron and Nitrogendoped silicene nano flake,Journal
ofOptoelectronical Nanostructures Vol. 2.No1(2017)41-48.
http://jopn.miau.ac.ir/
[12] O. Madelung, M. Schulz, Numerical Data and Functional Relationships in
Science and Technology, Group III, Landolt-Bornstein, Berlin, vol. 22a,
(1987) 219-220.
[13] S. H. Wei, A. Zunger, Calculated natural band offsets of all II–VI and III–
V semiconductors, Phys. Rev. B39, (1989) 1871-1883.
https://aip.scitation.org/doi/abs/10.1063/1.121249
[14] Handbook of Crystallographic Data for Inter metallic phases, P. Villars, L.
D. Calvert, 2nd Edition, (Asm International, Metals park, OH, 1985).
[15] G. Arora, B. L. Ahuja, Electronic Structure of some mercury
chalcongnides using compton spectroscopy, J. Radiation Physics and
Chemistery. 77, (2008) 9-17.
https://www.sciencedirect.com/science/article/abs/pii/S0969806X0700301
5
[16] Handbook on Physical Properties of Semiconductors, S. Adachi, Kluwer
Academic, New York, Boston, vol. 3, (2004) 420.
[17] K. U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, and R. Manzke, HgSe
:Metal or semiconductor. Phys. Rev. lett 78, (1997) 3165-3168.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.3165
[18] Handbook of optics, M. Bass, G. Li, E. V. Stryland, 3th Edition, The
McGraw-Hill Companies, (2010).
[19] H. Salehi, P. Amiri and R. Zare Hasanabad. Ab-initio Study of Electronic,
Optical, Dynamic and ThermoelectricProperties of CuSbX2 (X=S,Se)
Compounds, Journal ofOptoelectronical Nanostructures Vol.
3.No2(2018)53-64.
http://jopn.miau.ac.ir/
[20] Handbook of Condensed Matter and Materials Data, W. Martienssen, H.
Warlimont, Springer, (2004).
[21] P. L. Deboeij, F. Kootstra, J. G. Snijders, Relativistic Effects in the Optical
Response of HgSe by Time-Dependent Density Functional Theory, J.
Quantum Chemistry. 85, (2001) 449.
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.1516