Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیMahdi Zavvari 1 , Yashar Zehforoosh 2
1 - Department of Electrical Engineering, Urmia branch, Islamic Azad
University, Urmia, Iran
2 - Department of Electrical Engineering, Urmia branch, Islamic Azad
University, Urmia, Iran
الکلمات المفتاحية: Growth, Chemical bath deposition, Transition Metal Dichacogenide, Molybdenum disulfide,
ملخص المقالة :
Transition metal dichalcogenide (TMDC) materials are very important in
electronic and optical integrated circuits and their growth is of great importance in this
field. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)
thin films by chemical bath method (CBD). The CBD method of growth makes it
possible to simply grow large area scale of the thin layers of this material in lower
temperatures (near room temperature) and atmosphere pressure in comparison to costly
complicated growth methods. The results show the effect of growth temperature and
time on the quality of layers and XRD measurements were performed for analysis of
crystalline structure of layers. The results show that for the bath temperature of 60oC
and for 75 min growth time, better quality of layers can be obtained with low intensity.
The low intensity of XRD peaks belongs to poor crystalline structure of layers. For
higher bath temperatures, the films lose their uniformity. The results were confirmed by
SEM images.
[1] N. C. W. Choi, G. H. Han, J. Park. D. Akinwande, Y. H. Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications, Materialstoday. (2017) 20, 116-130.
[2] N. S. M. Samadi, M. Zirak, H. Zhang, H.-L. Zhang, A. Z. Moshfegh. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons. (2018) 3, 90-204.
[3] J. Y. S. Ahmed. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Lett. (2017) 9, 50.
[4] A. H. L. M. Pumera. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends in Analytical Chemistry, (2014) 61, 49-53.
[5] C. W. X. Duan, A. Pan, R. Yu, X. Duan. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. (2015) 44, 8859-8876.
[6] D. O. S. Manzeli, D. Pasquier, O. V. Yazyev 2D transition metal dichalcogenides. Nature Reviews Materials, (2017) 2, 17033.
[7] E. S. I. V. Baroogh Miandoab, H. Kahrade. The effect of concentration and time of hydrothermal process on the fluorescent property of Molybdenum Diselenide nano-layers. J. Optoelectronical Nanostructures. (2016) 1, 35-42.
[8] M. L. C. M. Amani, A. G. Birdwell, T. O’Regan, S. Najmaei, Z. Liu, M. Ajayan, J. Lou, M. Dubey. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. (2013) 102, 193107.
[9] A. R. B. Radisavljevic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nature Nanotechnology. (2011) 6, 147–150.
[10] C.-C. S. H.-L. Liu, S.-H. Su, C.-L. Hsu, M.-Y. Li, L.-J. Li. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. (2014) 105, 201905.
[11] K. O. R. Cudazzo, C. J. Sahle, A. Al-Zein, H. Berger, E. Navarro-Moratalla, S. Huotari, M. Gatti, A. Rubio. High-Energy Plasmonic Excitations in 2d Transition-Metal Dichalcogenides Phys. Rev. B. (2014) 90, 125125.
[12] M. B. K. Keyshar, X. Zhang, R. Vajtai, G. Gupta, C. K. Chan, T. E. Beechem, M. Ajayan, A. D. Mohite, T. Ohta. Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. ACS Nano, (2017) 11, 8223–8230.
[13] F. S. J. D. Cain, J. Wu, V. Dravid. Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. ACS Nano, (2016) 10, 5440–5445.
[14] H. Abouelkhair. Growth and Doping of MoS2 Thin Films for Electronic and Optoelectronic Applications. PhD Thesis. Florida Central University (2017).
[15] M. V. R. Shidpour, H. Maghsoudi, A. Simchi. A general two-step chemical vapor deposition procedure to synthesize highly crystalline transition metal dichalcogenides: A case study of MoS2, Materials Research Bulletin. (2016) 76, 473-478.
[16] A. A.-z. M. Gholampour, L. Shekari, R. Poursalehi, M. Soltanzadeh. Green Method for Synthesizing Gallium Nitride Nanostructures at Low Temperature. J. Optoelectronical Nanostructures, (2018) 3, 51-64.
[17] R. D. B. Taunk, D. Bisen, R. K. Tamrakar, N. Rathord. Synthesis and optical properties of chemical bath deposited ZnO thin film. Karbala International Journal of Modern Science, (2015) 1, 159-165.
[18] J. Z. S. Manouchehri, M. H. Yousefi. Substrate Effects on the Structural Properties of Thin Films of Lead Sulfide. J. Optoelectronical Nanostructures, (2018) 3, 1-18.
[19] K.M.Garadkara, A.A.Patila Hankarea ,A.Chateb D.J.Sathea S.D.Delekarc. MoS2: Preparation and their characterization. J. Alloys and Compounds, (2009) 487, 786-789.
[20] S. V. V. C. Byon. Synthesis and Characterization of Molybdenum Disulfide Nanoflowers and Nanosheets: Nanotribology. J. Nanomaterials, (2015) 710462.