Energy band correction due to one dimension tension in phosphorene
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیAli Izadparast 1 , Peyman Sahebsara 2
1 - Department of Physics, Isfahan University of Technology. Isfahan, Iran
2 - Department of Physics, Isfahan University of Technology. Isfahan, Iran
الکلمات المفتاحية: phosphorene, Band Structure, electron conductivity, tension, energy band gap,
ملخص المقالة :
Among graphene-like family, phosphorene is a typical semiconducting layered material, which can also be a superconductor in low temperature. Applying pressure or tension on phosphorene lattice results in changing the hopping terms, which change the energy bands of the material. In this research we use the tight-binding Hamiltonian, including relevant hopping terms, to calculate energy bands of normal and under tension phosphorene. Our results show that the energy gap decreases by decreasing / from 3 to 2, and finally the gap disappears.
[1] K.S. Novoselov, A. Morozov, S. Jiang, D. Grigorieva, M. K. Dubonos and S. Firsov, Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197 −200.
[2] K. S. Novoselov, E. McCann, S. Morozov, V. Fal’ko, M. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. Geim, Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Graphene. Nat. Phys. (2006), 2, 177 −180.
[3]K. F. Mak, C. Lee, Hone, J. Shan and T. F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. (2010),105, 136805.
[4]M. Ezawa, New Journal of Physics 16 (2014) 115004.
[5] A. Morita, Appl. Phys. A 39, 227 (1986).
[6]L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng,X. H. Chen, and Y. Zhang, Nature Nanotechnology 9,372 (2014).
[7] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Oezyilmaz, Appl. Phys. Lett. 104, 103106 (2014).
[8] W. Lu, et al., Nano Res. 7, 853 (2014).
[9] J. Qiao, X. Kong, Z.-X. Hu, F. Yang and W. Ji, Nature Communications, 2014, 5, 4475.
[10] E. Taghizadeh, M. Zare, and Fazileh, F., “Scaling laws for band gaps of phosphorene nanoribb ons: A tight-binding calculation”, Physical Review B 91, 085409 (2015).
[11]M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant and A. Castellanos-Gomez,Nano Lett., (2014), 14, 3347–3352.
[12] Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. Ye, C. X. H, J. Shan and P. Feng, Nanoscale, (2014), DOI:10.1039/C1034NR04829F.
[13] A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Materials 1, 025001 (2014).
[14] A. N. Rudenko and M. I. Katsnelson, Phys. Rev. B 89,201408 (2014).
[15] V. M Pereira, A. H. Neto, and N. M. R. Peres, Phys. Rev. B 80, 045401(2009).
[16]H. Bruus, F. Karsten, Many-body quantum theory in condensed ma tter physic, Published by Oxford Graduate Texts(2004).