مقایسهی شبیههای مختلف آشفتگی به منظور شبیهسازی مناسب جریانهای چگال در مجاورت محل کاهش شیب بستر
الموضوعات :نادر برهمند 1 , سید رضا موسوی 2
1 - استادیار گروه مهندسی عمران دانشگاه آزاد اسلامی واحد لارستان، لارستان، ایران
2 - دانشچوی کارشناسی ارشد سازه های هیدرولیکی، گروه مهندسی عمران دانشگاه آزاد اسلامی، واحد یاسوج ، یاسوج، ایران
الکلمات المفتاحية: جریان چگال, شکست شیب بستر, شبیهسازی عددی, نیمرخ قائم سرعت, نیمرخ قائم غلظت,
ملخص المقالة :
جریانهای چگال، به دلیل وجود تفاوت جرم حجمی مابین دو سیال، و یا مابین لایههای یک سیال، ایجاد میگردند. در این تحقیق با استفاده از یک شبیه عددی (نرمافزار پویای سیالات محاسباتی FLUENT) اقدام به شبیهسازی جریانهای چگال شور عبوری از روی یک بستر حاوی ناپیوستگی شیب گردید. گفتنی است که از نتایج آزمایشگاهی مطالعات گارسیا (1993) به منظور واسنجی و اعتبارسنجی نتایج محاسباتی کمک گرفته شد. معلوم گردید که استفاده از شبیه آشفتگی (از نوع RNG)، و شبکهای با ابعاد بهینه، به خوبی میتواند ویژگیهای جریان چگال شور را با توجه به مسألهی شکست شیب شبیهسازی نماید. این مطلب در مورد نیمرخهای قائم سرعت و غلظت موضعی (در مقاطع فوق و زیربحرانی پیش و پس از پرش چگال)، ضخامت جریان چگال، رخدادن پرش چگال، مقدار بیشترین سرعت موضعی و ارتفاع متناظر با این سرعت صادق میباشد. ضمناً، نتایج عددی جهت شبیهسازی ضخامت جریان چگال شور (در ناحیه زیربحرانی پس از پرش، و نیز در ناحیه پرش، بویژه در ناحیهی فوقبحرانی پیش از پرش) نشان داد که علاوه بر شبیه آشفتگی از نوع RNG، شبیه آشفتگی از نوع معیار نیز سازگاری نسبتاً مناسبی را با نتایج آزمایشگاهی از خود نشان میدهد. در این تحقیق، موقعیت بیشترین سرعت در ناحیهی فوقبحرانی جریان چگال شور نسبت به ناحیه زیربحرانی به بستر، نزدیکتر بود. همچنین، استفاده از شبیه آشفتگی از نوع RNG منجر به نیمرخهای دقیقتری از سرعتهای موضعی نسبت به نیمرخهای قائم غلظتهای موضعی گردید. علاوه بر این، به علت محدودیت در عمق آب تمیز محیطی، یک جریان برگشتی در نتایج شبیه عددی مشاهده گردید. نهایتا، با افزایش شیب قسمت ابتدایی بستر، علاوه بر انتقال موقعیت پرش چگال به پاییندست جریان، مقدار اختلاط سیال محیطی با جریان فوقبحرانی پیش از پرش نیز در مقایسهی با سایر قسمتهای جریان چگال افزایش بیشتری مییافت.
1 .صفایی اردکـانی، ا.، ح. افشـین، و ب. فیروزآبـادی. 1386 .
بررسی تجربی ساختار جریان چگال سه بعـدی. ششـمین
کنفـرانس هیـدرولیک ایـران. دانشـگاه شـهرکرد. 13-15
شهریور.
2 .فیروزآبـــادی، ب.، س.م.ر. موســـوی حکمتـــی و س.ع.
حسینی. 1384 .بررسی تجربی رسوبگذاری دو بعدی و سه
بعـدی مغشـوش. پنجمـین کنفـرانس هیـدرولیک ایـران.
دانشگاه شهید باهنر کرمان. 7-19 آبان ماه.
currents on an incline. J. Hydraul. Eng.
112: 27–42.
Hopfinger. 1996. Flow structure in
turbidity currents. J. Hydraul. Res. 34:
713–718.
Numerical simulation and experimental
investigation of 3-dimensional confined
density currents. Int. J. Dynamics of
Fluids. 3: 45-62.
k - e turbulence modeling of density
currents developing two dimensionally on
a slope. J. Hydraul. Eng. 128: 55-63.
based upon ( k - e ) turbulence. Cont. Shelf
Res. 9: 617–627.
Mathematical modeling of plunging
reservoir flows. J. Hydraul. Res. 26: 525–
537.
currents on sloping bed. J. Scientia of
Iranica. 8: 223–235.
laminar turbid density currents. J. Hydraul.
Res. 41: 623-630.
Lausanne, Switzerland, 381–386.
sediment-driven bottom currents. J.
Hydraul. Eng. 119: 1094-1117.
simulation of the flow at a gravity-current
head. Part 1. Flow topology and front
speed for slip and no-slip boundaries, J.
Fluid Mech. 418: 189–212
Numerical model of turbidity currents with
a deforming bottom boundary. J. Hydraul.
Eng. 131: 283-293.
density current. I. Flow in straight confined
and unconfined channels. J. Hydraul. Res.
42: 578–590.
response of turbidity currents to a canyonfan transition: internal hydraulic jumps and
depositional signatures. J. Hydraul. Res.
44: 631-653.
Records of riverborne turbidity currents
and indications of slope failures in the
Rhone Delta of Lake Geneva. Limnology
and Oceanography. 33(3).
Application of the energy-dissipation
model of turbulence to the calculation of
flow near a spinning disc. Letters in Heat
Mass Transfer. 1: 131–138.
Experimental study of reservoir turbidity
current. J. Hydraul. Eng. 123: 520–528.
Simulation of a density current turbulent
flow employing different RANS models: A
comparison study. Scientia Iranica,
Transaction B: Mechanical Engineering
16: 53-63.
Pantin. 1986. Self-accelerating turbidity
currents. J. Fluid Mech. 171: 145–181.
environment and the laboratory. Ellis
Harwood, Chi Chester, U.K.
Syvitski. 1997. INFLO1: A model
predicting the behaviour of turbidity
currents generated at river mouths.
Comput. Geosci. 23: 975– 991.
vertical structure of density and turbidity
currents: theory and observations. J.
Geophys. Res. 93(C3): 3528–3542.
The vertical structure of turbidity currents
and a necessary condition for selfmaintenance. J. Geophys. Res. 93(C3):
3543–3553.
numerical modeling of reservoir
sedimentation. Proc., IAHR Symposium on
River, Coastal and Estuarine
Morphodynamics. Barcelona, Spain. 457-
468.
version 5.0. 1998. Incorporated, Lebanon,
N.H.
_||_