برآورد بار رسوب معلق روزانه با استفاده از یک مدل شبکه عصبی مصنوعی ترکیبی جدید همراه با روش بهینه سازی مبتنی بر ناظر- معلم- یادگیرنده
سیامک درودی
1
(
گروه عمران دانشگاه آزاد واحد علوم و تحقیقات تهران ایران
)
احمد شرافتی
2
(
دانشکده عمران،واحد علوم و تحقیقات، دانشگاه آزاد اسلامی،تهران، ایران
)
الکلمات المفتاحية: ", بار رسوب معلق", , ", الگوریتم بهینه سازی", , ", شبکه های عصبی مصنوعی",
ملخص المقالة :
چکیده:
مقدمه: بار رسوب معلق SSLیکی از پدیده های پیچیده هیدرولوژیکی است و پیشینی آن دشوار است. در این مطالعه از روش شبکه عصبی مصنوعی جهت پیش بینی بار رسوب معلق استفاده شده است. از آنجاییکه دقت عملکرد شبکه های عصبی مصنوعی به پارامترهای آن بستگی دارد. استفاده از الگوریتم های فراابتکاری می تواند در جهت افزایش عملکرد آنها موثر باشد. منطقه مورد مطالعه در حوضه آبریز سد کوثر واقع در جنوب غربی ایران می باشد.
روش: دبی رودخانه و بارش به عنوان ویژگی های ورودی به مدل های پیش بینی در نظر گرفته شدپنج ترکیب ورودی انتخاب شدند. از الگوریتم های فراابتکاری OTLBO، PSO با شبکه عصبی مصنوعی ترکیب شدند و مدل های پیش بینی ANN-OTLBO و ANN-PSO تدوین گردید. مدلهای پیشبینی با استفاده از شاخصهای عددی و بصری مختلف ارزیابی میشوند.
یافته ها: نتایج نشان میدهد که مدل ANN-OTLBO عملکرد پیشبینی بالاتری نسبت به سایر مدلهای بکار رفته در مطالعه حاضر ارائه میدهد. که مقادیر عبارتند از 96358/0R=، 14/258 RMSE=،6752/2- PBIAS= و92674/0=NSE ، و همچنین بر اساس نمودار scatter plot و heat map و box plot نزدیک ترین داده های پیش بینی شده به داده های مشاهداتی متعلق به مدل ANN-OTLBO-M5 می باشد.
نتیجه گیری: در بین تمامی مدل های ANN،ANN-OTLBO، ANN-PSO، مدل ANN-OTLBO برترین عملکرد را دارا می باشد. مدل مذکور توانسته است مقادیر بالا ، متوسط و کم رسوب را با دقت مناسبی پیش بینی کند و ترکیب الگوریتم های فراابتکاری با شبکه عصبی مصنوعی باعث افزایش دقت پیش بینی رسوب می شوند.
_||_