بررسی عددی تأثیر مانع ذوزنقهای شکل در اختلاط جریان گلآلود
الموضوعات :محمد گیوه چی 1 , بهاره پیرزاده 2 , سکینه صفری 3
1 - استادیار گروه مهندسی عمران- دانشگاه سیستان و بلوچستان، زاهدان،
2 - استادیار گروه مهندسی عمران- دانشگاه سیستان و بلوچستان، زاهدان
3 - دانشجوی دکترای آب و سازههای هیدرولیکی گروه مهندسی عمران- دانشگاه سیستان و بلوچستان، زاهدان،
الکلمات المفتاحية: Flow-3D, جریان گلآلود, مانع ذوزنقهای, اختلاط جریان, انرژی جنبشی آشفتگی,
ملخص المقالة :
جریانهای گلآلود، جریانهای ثقلی هستند که اختلاف چگالی یا اختلاف وزن واحد حجم بین دو سیال بواسطه رسوبات معلق میباشد. به واسطه فراوانی این جریانها در طبیعت، شناخت و بررسی خصوصیات و عوامل مؤثر بر آن امری ضروری و اجتناب ناپذیر میباشد. ایجاد مانع در مسیر جریان غلیظ میتواند بر روی مشخصات جریان چگال از جمله میزان اختلاط و چگالی جریان تأثیر داشته باشد. در این مقاله، با استفاده از نرمافزار Flow-3D به بررسی تأثیر مانع ذوزنقهای شکل در ویژگیهای جریان گلآلود به خصوص میزان اختلاط آن، پرداخته شده است. به منظور صحتسنجی، نتایج مدل عددی حاضر با نتایج کار آزمایشگاهی ناجی ابهری و همکاران (1394) مقایسه گردید. بررسی نتایج نشان دهنده آن است که قرارگیری مانع ذوزنقهای سبب افزایش مقدار انرژی آشفتگی به میزان حدود 1000 درصد، نسبت به حالت بدون مانع میگردد. نمودار تغییرات چگالی در عمق برای کانال بامانع و بدون مانع، حاکی از آن بود که چگالی جریان عبوری در حالت با مانع کمتر از حالت بدون مانع می-باشد. همچنین با افزایش یک درصدی میزان ارتفاع مانع ذوزنقه ای، به طور میانگین 2 درصد انرژی آشفتگی افزایش مییابد و با افزایش یک درصد زاویه ورودی مانع، متوسط 36/1 درصد افزایش انرژی آشفتگی را در پی دارد. بررسی نتایج حاصل از شبیه-سازی انجام شده با سرعتهای مختلف بیانگر آن بود که با افزایش یک درصدی سرعت ورودی جریان آب زلال، به طور میانگین میزان انرژی آشفتگی 9/2 درصد افزایش مییابد.
1) Asgharipri, S. A. And Mohagheghin, S. M. 2015. Numerical Investigation of the Effect of Creating Protective Pits on the Bed on Concentrated Flow Discharge. Journal of Water Resources Engineering. 7 (23): 1-12 (In Persian).
2) Barahmand, n. And Mousavi, S. R. 2014. Comparison of different turbulence simulations in order to properly simulate dense currents in the vicinity of the bed slope reduction. Journal of Water Resources Engineering, 6 (16): 79-93 (In Persian).
3) Hosseini, A. And Abdiipour, A. 2011. Application of Flow-3D software in modeling hydrodynamic structure of continuous muddy flow streams entering dams. 9th Iranian Hydraulic Conference. Tarbiat Modares University (In Persian).
4) Haqqabi, A. H., Abbaspour, B., Maleki, AS. And Torabi Poodeh, h. 2016. Numerical Simulation of Flow Pattern on Triangular Overflows and Comparison with Linear Overflow Using Flow-3D Software. Journal of Water Resources Engineering. 9 (29): 125-137 (In Persian).
5) Torabi Poudeh, H., Fathi Moghadam, M., M. Ghomeshi and M. Shafai-Bajestan, 2007. Head Velocity and Entrainment of Density Current in an Expansion Reach, Iranian Water Resources Research. Volume 3, No. 1, 56-67 (In Persian).
6) Tabatabai, S. M., Khazimehnejad, H., Akbarpour, A. And Varjavand, p. 2017. Experimental Investigation of the Effect of Permeable Barrier Arrangement and Bed Slope on Concentrated Hydraulic Characteristics. Dam and Hydroelectric Power Plant. 4 year. No 13 (In Persian).
7) Sarvinejad, B., Ghomashi, M. And Bina, M. 2013. Investigation of concentration mixing intensity in converged sections and comparison with constant and diverging sections. Irrigation Science and Engineering (Journal of Agricultural Science). Vol. 36. No. 3 (In Persian) .
8) Salajeghah, A., Ghaini Hesarouieh, M., 2016. Numerical modeling of inlet flow to drinking water tanks. 15th Iranian Hydraulic Conference, Faculty of Engineering, Imam Khomeini International University, Qazvin (In Persian).
9) Adeli, A., Barani, Gh. And Zineamat Kermani, M. 2013. Investigation of barrier current condensation control in dams using Fluent software. 5th Iranian Water Resources Management Conference. Shahid Beheshti University (In Persian).
10) Firoozabad, B. Bagherpour, A. And Afshin, H., 2008. Experimental study of turbulence parameters in brine condensate flow. 11th Fluid Dynamics Conference. Khaje Nasir al-Din Tusi University of Technology, Faculty of Mechanical Engineering (In Persian).
11) Firoozabad, B. Bagherpour, A. And Afshin, H., 2008. Experimental study of turbulence parameters in brine condensate flow. 11th Fluid Dynamics Conference. Khaje Nasir al-Din Tusi University of Technology, Faculty of Mechanical Engineering (In Persian).
12) Keshtkar, Sh., Ayubzadeh, SA and Ghodsian, M.Sc. 2017. Experimental study of the effect of barrier height on inhibition of turbulent flow velocity under abrupt change of reservoir bed slope. Journal of Water Resources Engineering. 10 (32): 55-70 (In Persian).
13) . Marousi, M., Qomashi, M. And Basharvard, h. 2009. Barrier deposition control in dams reservoirs. Eighth International Seminar on River Engineering. Shahid Chamran University. Ahwaz (In Persian).
14) Mansouri Hafshajani, M., Ghomashi, M. Shafi'i Bejestan, m. 2016. Estimation of mixing intensity in fluid moving around in opposite direction with concentrated flow motion. 6th Iranian National Water Resources Management Conference. The University of Kordestan (In Persian).
15) Naji Abhari, M., Iranshahi, M., Ghodsian, M. And Firoozabad, b. 2015. Investigation of laboratory observations of the effect of triangular barrier on reservoir floor on muddy stream structure. Journal of Hydraulic. Volume 10. No. 4 (In Persian).
16) 17- Waghefi, M., Akbari, M. And Fayoz, A. 2015. In vitro comparison of three-dimensional flow velocity components around a T-shaped borehole located at 90 degree arc with rigid bed with Flow-3D software results. Journal of Water Resources Engineering. 8 (25): 31-46. (In Persian)
17) .Anderson, J.D .1995.Computational Fluid Dynamics: The Basics with Applications. New York.
18) De Cesare, G., D.oehy,C., and J.Schleiss, A. 2008. Experiments on turbidity currents influenced by solid and permeable obstacles and water jet scsreens.
19) Durbin, P.A. and Pettersson Reif, B.A. 2010. Statistical Theory and Modeling for Turbulent. Norway.
20) Flow-3D Help. Version 11.1.
21) Lubbersen, Y.S., Fasaei, F., kroon.P., Boom. R.M. and Schutyser. M.A.I. 2015. Particle suspension concentration with sparse obstacle arrays in a flow channel.Chemical Engineering andProcessing: Process Intensification.
22) Marosi, M., Ghomeshi, M. and Sarkardeh, H. 2015. Sedimentation control in the reservoirs by using an obstacle. Indian Academy of Sciences.Vol. 40, Part 4.June. pp. 1373–1383.
23) Varjavand, P., Ghomashi, M.,Hosseinzadeh Dalir, A., Farsadizadeh, B. and Docheshmeh Gorgij, A. 2015. Experimental observation of saline underflows and turbidity currents, flowing over rough beds. Journal Of Civil Engineering. August.
24) Yaghoubi, S., Afshin, H., Firoozabadi, B. and Farizan, A. 2017. Experimental Investigation of the Effect of Inlet Concentrationon the Behavior of Turbidity Currents in the Presence of TwoConsecutive Obstacles. J. Waterway. Port. Coastal. Ocean Eng.V.143.
_||_