بررسی ریزساختار و خواص مکانیکی فولاد API X70 در شرایط مختلف نورد گرم
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینمحسن ریحانیان 1 , مهدی رضایی 2 , مصطفی اسکندری 3
1 - استاد دانشگاه چمران اهواز
2 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
3 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
الکلمات المفتاحية: ریزساختار, خواص مکانیکی, نورد گرم, فولاد API X70, فرایند کنترل شده ترمومکانیکال (TMCP),
ملخص المقالة :
در این پژوهش فولاد API X70 بهعنوان نوعی از فولادهای استحکام زیاد با عناصر آلیاژی کم (HSLA) در شرایط مختلف تحت نورد گرم قرار گرفت و تاثیر پارامترهای مختلف نورد گرم طی فرایند کنترل شده ترمومکانیکال (TMCP) بر روی ریزساختار و خواص مکانیکی بررسی شد. برای ارزیابی ریزساختار از میکروسکوپ نوری و الکترون روبشی (SEM) و برای ارزیابی مکانیکی از آزمون کشش و سختی استفاده شد. فولاد در دمای 1250 درجه سانتی گراد به مدت 30 دقیقه پیش گرم شد. سپس در گستره دمایی 1100 تا 730 درجه سانتی گراد با سرعت 10 دور بر دقیقه طی سه (نمونه A)، چهار (نمونه B) و پنج (نمونه C) مرحله نورد گرم و در هوا سرد شد. کرنش کل اعمال شده در همه نمونهها برابر 62/0 انتخاب شد. در شرایط پنج مرحلهای، یک نمونه در دمای پایانی 900 درجه سانتی گراد (نمونه D)، یک نمونه با سرعت 20 دور بر دقیقه (نمونه E) نورد و یک نمونه در آب سرد شد (نمونه F). نتایج نشان داد ریزساختار همه نمونهها، بجز نمونه سرد شده در آب (نمونه F)، از فریت و پرلیت ولی با مورفولوژی متفاوت تشکیل شده است. در شرایط یکسان، کمترین اندازه دانه در نمونه با سرعت 20 دور بر دقیقه (نمونه E) ایجاد شد. به دلیل حذف پرلیت و تشکیل فازهای شبه پایدار، نمونه سرد شده در آب (نمونه F) بیشترین استحکام و سختی و کمترین درصد ازدیاد طول را از خود نشان داد. بهترین ترکیب استحکام و درصد ازدیاد طول در نمونه با سرعت 20 دور بر دقیقه (نمونه E) بدست آمد.
1- W.B. Morrison, Microalloy steels – the beginning, Materials Science and Technology, 25 (2009) 1066-1073.
2- A.J. DeArdo, M.J. Hua, K.G. Cho, C.I. Garcia, On strength of microalloyed steels: an interpretive review, Materials Science and Technology, 25 (2009) 1074-1082.
3- T.N. Baker, Microalloyed steels, Ironmaking & Steelmaking, 43 (2016) 264-307.
4- I. Olivares, M. Alanis, R. Mendoza, B. Campillo, J.A. Juarez-Islas, Development of microalloyed steel for pipeline applications, Ironmaking & Steelmaking, 35 (2008) 452-457.
5- J. Zhao, Z. Jiang, Thermomechanical processing of advanced high strength steels, Progress
in Materials Science, 94 (2018) 174-242.
6- S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas, Modern HSLA steels and role of non-recrystallisation temperature, International Materials Reviews, 57 (2012) 187-207.
7- A.J. Deardo, Niobium in modern steels, International Materials Reviews, 48 (2003) 371-402.
8- T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 60 (2014) 130-207.
9- A.R.H. Far, S.H.M. Anijdan, S.M. Abbasi, The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type, Materials Science and Engineering: A, 746 (2019) 384-393.
10- S. Nemat-Nasser, W.-G. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling, Mechanics of Materials, 37 (2005) 379-405.
11- L.d.J. Jorge, V.S. Cândido, A.C.R.d. Silva, F.d.C. Garcia Filho, A.C. Pereira, F.S.d. Luz, S.N. Monteiro, Mechanical properties and microstructure of SMAW welded and thermically treated HSLA-80 steel, Journal of Materials Research and Technology, 7 (2018) 598-605.
12- H. Izadi, M. Tavakoli, M.H. Moayed, Effect of thermomechanical processing on hydrogen permeation in API X70 pipeline steel, Materials Chemistry and Physics, 220 (2018) 360-365.
13- A.A. Gorni, P.R. Mei, Effect of controlled-rolling parameters on the ageing response of HSLA-80 steel, Journal of Materials Processing Technology, 197 (2008) 374-378.
14- S.K. Dhua, D. Mukerjee, D.S. Sarma, Influence of thermomechanical treatments on the microstructure and mechanical properties of HSLA-100 steel plates, Metallurgical and Materials Transactions A, 34 (2003) 241-253.
15- C. Ouchi, T. Sampei, I. Kozasu, The Effect of Hot Rolling Condition and Chemical Composition on the Onset Temperature of γ-α Transformation after Hot Rolling, Transactions of the Iron and Steel Institute of Japan, 22 (1982) 214-222.
16- A. Hossain Seikh, M.S. Soliman, A. AlMajid, K. Alhajeri, W. Alshalfan, Austenite Grain Growth Kinetics in API X65 and X70 Line-Pipe Steels during Isothermal Heating, Advances in Materials Science and Engineering, 2014 (2014) 246143.
17- Y.G. Ko, M.J. Kim, K. Hamad, Structural evolutions and mechanical properties of IF steel deformed by differential speed rolling at various per-pass-thickness reductions, Materials Letters, 250 (2019) 178-181.
18- Å. Sjöström, The effect of high reductions per pass on material properties in the hot rolling of low-alloyed steel, Journal of Mechanical Working Technology, 6 (1982) 347-360.
19- R. Grewal, C. Aranas, K. Chadha, D. Shahriari, M. Jahazi, J.J. Jonas, Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field, Acta Materialia, 109 (2016) 23-31.
20- Y. Han, J. Shi, L. Xu, W.Q. Cao, H. Dong, Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel, Materials Science and Engineering: A, 553 (2012) 192-199.
21-B. Guo, L. Fan, Q. Wang, Z. Fu, Q. Wang, F. Zhang, Effect of Finish Rolling Temperature on the Microstructure and Tensile Properties of Nb–Ti Microalloyed X90 Pipeline Steel, Metals, 6 (2016) 323.
22- I. Dey, S.K. Ghosh, R. Saha, Effects of cooling rate and strain rate on phase transformation, microstructure and mechanical behaviour of thermomechanically processed pearlitic steel, Journal of Materials Research and Technology, 8 (2019) 2685-2698.
23- M. Katsumata, O. Ishiyama, T. Inoue, T. Tanaka, Microstructure and Mechanical Properties of Bainite Containing Martensite and Retained Austenite in Low Carbon HSLA Steels, Materials Transactions, JIM, 32 (1991) 715-728.
24- B.C. Muddle, J.F. Nie, Formation of bainite as a diffusional–displacive phase transformation, Scripta Materialia, 47 (2002) 187-192.
_||_