مطالعه خواص نوری، رفتار حرارتی و پایداری گرمایی ذرات پنتااریتریتول تترانیترات پوششدهی شده با نانورنگدانه لیتول روبین توسط تکنیک فراصوت با استفاده از روش طراحی آزمایش تاگوچی
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینمعصومه صابری لمراسکی 1 , سعید بابایی 2 , سیدمهدی پورمرتضوی 3
1 - دانشجوی دکتری، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
2 - دانشیار شیمی تجزیه، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
3 - دانشیار شیمی تجزیه، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
الکلمات المفتاحية: خواص نوری, پوششدهی, پتن, روش فراصوت, طراحی آزمایش تاگوچی,
ملخص المقالة :
در این تحقیق به منظور پوششدهی ذرات پنتااریتریتول تترانیترات (پتن) از ترکیب استان و نانورنگدانه لیتول روبین بی قرمز 57:1 (NLR) استفاده گردید. پس از مطالعات ساختاری نانوکامپوزیت پتن-استان-NLR توسط روشهای مادون قرمز (FT-IR) و میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، از روش طراحی آماری تاگوچی برای بررسی و بهینهسازی میزان انعکاس نور نانوکامپوزیت در طول موج nm 532 استفاده شد. اثر چهار عامل غلظت استان، غلظت NLR، سرعت همزدن و دمای حمام فراصوت در سه سطح برمیزان انعکاس نور مورد بررسی قرار گرفت و تحلیل واریانس (ANOVA) نتایج نشان داد که غلظت NLR با درصد مشارکت 36/79 دارای بالاترین اثر میباشد. شرایط بهینه برای دستیابی به حداقل میزان انعکاس نورشامل 5% وزنی استان، 7%درصد وزنی NLR، سرعت هم زدن rpm 400 و دمای حمام فراصوت ºC50 بدست آمد. حداقل میزان انعکاس نور با تحلیل واریانس دادهها برای این شرایط بهینه برابر 67/1±97/4 درصد پیشبینی شد. میانگین نتایج تجربی برای میزان انعکاس نور نانوکامپوزیت تحت شرایط بهینه نیز برابر با 90/5 درصد حاصل شد. در ادامه رفتار حرارتی و پایداری در خلاء نمونه بهینه مورد بررسی قرار گرفت که نتایج حاصل نشاندهنده عدم تغییر در دمای ذوب و تجزیه نانوکامپوزیت نسبت به پتن خالص و بیانگر سازگاری NLR و استان با ترکیب پتن است.
References:
1- R. Sanghavi, S. Sundaram, M. Kulkarni, S. Asthana, B. Bohra, "Studies on ignition of TPE based RDX propellants by laser impulse", 2005.
2- A. Atwood, K. Ford, D. Bui, P. Curran, T. Lyle, "Radiant ignition studies of ammonium perchlorate based propellants", Progress in Propulsion Physics, Vol. 1, pp. 121-140, 2009.
3- R. Akhmetshin, A. Razin, V. Ovchinnikov, A. Skripin, V. Tsipilev, V. Oleshko, V. Zarko, A. Yakovlev, Effect of laser radiation wavelength on explosives initiation thresholds, in: Journal of Physics: Conference Series, IOP Publishing, 2014, pp. 012015.
4- D.N. Herreros, X. Fang, "Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser", Optics & Laser Technology, Vol. 89, pp. 21-26, 2017.
5- H.M. Wang, X. Chen, C. Zhao, NEPE propellant ignition and combustion under laser irradiation, in: Advanced Materials Research, Trans Tech Publ, 2014, pp. 10-14.
74 مطالعه خواص نوری، رفتار حرارتی و پایداری گرمایی ذرات پنتااریتریتول تترانیترات پوششدهی شده با نانورنگدانه...
6- N. S. Jang, S. H. Ha, K. H. Kim, M.H. Cho, S.H. Kim, J.-M. Kim, "Low-power focused-laser-assisted remote ignition of nanoenergetic materials and application to a disposable membrane actuator", Combustion and Flame, Vol. 182, pp. 58-63, 2017.
7- X. Fang, W.G. McLuckie, "Laser ignitibility of insensitive secondary explosive 1, 1-diamino-2, 2-dinitroethene (FOX-7)", Journal of hazardous materials, Vol. 285, pp. 375-382, 2015.
8- I. Assovskiy, G. Melik-Gaikazov, G. Kuznetsov, Direct laser initiation of open secondary explosives, in: Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012014.
9- X. Fang, M. Sharma, C. Stennett, P.P. Gill, "Optical sensitisation of energetic crystals with gold nanoparticles for laser ignition", Combustion and Flame, Vol. 183, pp. 15-21, 2017.
10- H. Oestmark, N. Roman, "Laser ignition of pyrotechnic mixtures: Ignition mechanisms", Journal of applied physics, Vol. 73, pp. 1993-2003, 1993.
11- W. Hawthorne, D. Weddell, H. Hottel, "Third Symposium on Combustion and Flame and Explosion Phenomena", The Williams and Wilkins Co., Baltimore, Maryland, Vol., pp. 266-288, 1949.
12- E.D. Aluker, A.G. Krechetov, A.Y. Mitrofanov, A.S. Zverev, M.M. Kuklja, "Understanding limits of the thermal mechanism of laser initiation of energetic materials", The Journal of Physical Chemistry C, Vol. 116, pp. 24482-24486, 2012.
13- M.A. Ilyushin, I.V. Tselinskiy, A.V. Smirnov, I.V. Shugalei, "Physicochemical properties and laser initiation of a copper perchlorate complex with 3 (5)-hydrazino-4-amino-1, 2, 4-triazole (HATr) as a ligand", Central European Journal of Energetic Materials, Vol. 9, pp. 3-16, 2012.
14- B. Aduev, D. Nurmukhametov, "The influence of added aluminum nanoparticles on the sensitivity of pentaerythritol tetranitrate to laser irradiation", Russian Journal of Physical Chemistry B, Vol. 5, pp. 290, 2011.
15- I.Y. Zykov, "The critical initiation energy density of PETN with aluminum nanoparticle additives", Modern fundamental and applied researches, Vol. 1, pp. 79-84, 2013.
16- X. Fang, S.R. Ahmad, "Laser ignition of an optically sensitised secondary explosive by a diode laser", Central European Journal of Energetic Materials, Vol. 13, pp., 2016.
17- J.H. Kim, M.H. Cho, K.J. Kim, S.H. Kim, "Laser ignition and controlled explosion of nanoenergetic materials: The role of multi-walled carbon nanotubes", Carbon, Vol. 118, pp. 268-277, 2017.
18- J.H. Kim, J.Y. Ahn, H.S. Park, S.H. Kim, "Optical ignition of nanoenergetic materials: The role of single-walled carbon nanotubes as potential optical igniters", Combustion and Flame, Vol. 160, pp. 830-834, 2013.
19- B. Huang, X. Hao, H. Zhang, Z. Yang, Z. Ma, H. Li, F. Nie, H. Huang, "Ultrasonic approach to the synthesis of HMX@ TATB core–shell microparticles with improved mechanical sensitivity", Ultrasonics sonochemistry, Vol. 21, pp. 1349-1357, 2014.
75 مجله مواد نوین/ جلد 9/شماره 3 / بهار 1398
20 ج. وحدتی خاکی، خ. یوسفی و م. زبرجد، " بهینه سازی -
شرایط آزمایش با روش آماری تاگوچی برای ساخت نانو
ذرات هیدروکسی آپاتیت به روش سل ژل،" نشریه مواد -
نوین، دوره 4 شماره 15 ، ص 1 - 10 ، اردیبهشت 1393 .
21 ر. معمازاده، س. جوادپور و . پناهی، " بهینه سازی -
عوامل موثر بر اندازه نانو ذرات اکسید قلع به روش
تاگوچی،" نشریه مواد نوین، دوره 3 شماره 7 ، ص 11 -
20 ، اسفند 1391 .
22 س. پایدار، م. شریعت و س. جوادپور، " بهینه سازی -
پارامترهای فریند ریخته گری نواری زیرکونیا تثبیت شده
با ایتریا به وسیله طراحی تاگوچی به عنوان الکترولیت
پیل سوختی اکسید جامد،" نشریه مواد نوین، دوره 7
شماره 4، ص 47 - 56 ، اسفند 1396 .
23- A. K. Nandi, M. Ghosh, V.B. Sutar, R.K. Pandey, "Surface coating of cyclo tetramethylene tetranitramine (HMX) crystals with the insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB)", Central European Journal of Energetic Materials, Vol. 9, pp. 119-130, 2012.
24- J. S. Lee, C. K. Hsu, C. L. Chang, "A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX", Thermochimica Acta, Vol. 392, pp. 173-176, 2002.
25- H.R. Pouretedal, S. Damiri, M. Ravanbod, M. Haghdost, S. Masoudi, "The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods", Journal of Thermal Analysis and Calorimetry, Vol. 129, pp. 521-529, 2017.
26- M. Künzel, Q.-L. Yan, J. Šelešovský, S. Zeman, R. Matyáš, "Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX", Journal of Thermal Analysis and Calorimetry, Vol. 115, pp. 289-299, 2014.
27- C. Niu, B. Jin, R. Peng, Y. Shang, Q. Liu, "Preparation and characterization of insensitive HMX/rGO/G composites via in situ reduction of graphene oxide", RSC Advances, Vol. 7, pp. 32275-32281, 2017.