تاثیر عملیات حرارتی بر فازهای تشکیل شده شیشه-سرامیک 45S5 سنتز شده در حالت پودری و قرصی شکل و بررسی زیست فعالی آنها
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینمحمدرضا مسجدی 1 , بابک هاشمی 2
1 - کارشناسی ارشد، دانشگاه شیراز، دانشکده مهندسی، بخش مهندسی مواد
2 - دانشیار دانشگاه شیراز، دانشکده مهندسی، بخش مهندسی مواد
الکلمات المفتاحية: بیومواد, شیشه-سرامیک زیستی 45S5, شیشه سودالایم, واکنش در حالت جامد, زیست فعالی,
ملخص المقالة :
شیشه زیستی 45S5 به روش واکنش در حالت جامد با استفاده از شیشه سودالایم، کلسیم کربنات، سدیم کربنات و فسفر پنتااکسید سنتز شد. ترکیب شیشه سودالایم توسط آنالیز عنصری فلئورسانس پرتوی ایکس(XRF) تعیین شد و مقادیر مورد نیاز از سایر مواد اولیه برای رسیدن به ترکیب شیشه زیستی 45S5 محاسبه و به آن اضافه گردید. مخلوط پودرها به دو شکل پودر و قرص تهیه شده و تحت شرایط عملیات حرارتی مختلف (ºC800 تا ºC1000) قرار گرفت تا شیشه-سرامیک مطلوب به دست آید. با استفاده از پراش اشعه ایکس (XRD) و آنالیز حرارتی افتراقی (DTA) خواص فازی و حرارتی نمونهها بررسی شد. دمای تبلور شیشه سنتز شده ºC690 تعیین شد. فازهای بلورین Ca2Na2Si3O9 و CaNaPO4 در تمام نمونهها مشاهده شد. نمونهها در محلول مشابه بدن (SBF) قرار گرفته و زیست فعالی آنها به روش برون تنی (in vitro) با ارزیابی الگوهای پراش اشعه ایکس (XRD) و تصاویر میکروسکوپ الکترونی (SEM) مورد بررسی قرار گرفت. زیست فعالی نمونهها با توجه به شناسایی لایه هیدروکسی آپاتیت تشکیل شده بر روی سطوح آنها تایید گردید. نتایج نشان داد که دمای عملیات حرارتی نسبت به زمان آن تاثیر بیشتری بر تشکیل شدن فازهای بلورینه دارد و نمونهی پودریای که تحت شرایط عملیات حرارتی در دمای ºC1000 و مدت زمان 8 ساعت قرار گرفته، خواص زیست فعالی بهتری نسبت به نمونههایی که در دمای پایینتر عملیات حرارتی شدهاند دارند.
References:
1-J. Y. Wong and J. D. Bronzino, Biomaterials: CRC Press, 2007.
2-B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine: Elsevier Science, 2004.
3-E. El-Meliegy and R. van Noort, Glasses and Glass Ceramics for Medical Applications: Springer New York, 2011.
4-L. L. Hench, An Introduction to Bioceramics, 2013.
5-P. De Aza, A. De Aza, P. Pena, and S. De Aza, "Bioactive glasses and glass-ceramics," Boletin de la Sociedad Espanola de Ceramica y Vidrio, vol. 46, pp. 45-55, 2007.
6-L. L. Hench, "The story of Bioglass®," Journal of Materials Science: Materials in Medicine, vol. 17, pp. 967-978, 2006.
7-L. L. Hench and J. Wilson, An Introduction to Bioceramics: World Scientific, 1993.
8-H. A. ElBatal, E. M. A. Khalil, and Y. M. Hamdy, "In vitro behavior of bioactive phosphate glass–ceramics from the system P2O5–Na2O–CaO containing titania," Ceramics International, vol. 35, pp. 1195-1204, 4// 2009.
9-L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, and A. Govin, "Structural transformations of bioactive glass 45S5 with thermal treatments," Acta Materialia, vol. 55, pp. 3305-3313, 6// 2007.
10-T. Kokubo, Bioceramics and their clinical applications: Elsevier, 2008.
11-L. L. Hench, "Biomaterials: a forecast for the future," Biomaterials, vol. 19, pp. 1419-1423, 1998.
12-P. Li, Q. Yang, F. Zhang, and T. Kokubo, "The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layerin vitro," Journal of materials science: Materials in medicine, vol. 3, pp. 452-456, 1992.
13-O. Peitl Filho, G. P. LaTorre, and L. L. Hench, "Effect of crystallization on apatite-layer formation of bioactive glass 45S5," J Biomed Mater Res, vol. 30, pp. 509-14, Apr 1996.
14-O. Peitl, E. D. Zanotto, and L. L. Hench, "Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics," Journal of Non-Crystalline Solids, vol. 292, pp. 115-126, 2001.
15-H. Arstila, L. Hupa, K. H. Karlsson, and M. Hupa, "Influence of heat treatment on crystallization of bioactive glasses," Journal of Non-Crystalline Solids, vol. 354, pp. 722-728, 1/15/ 2008.
16-H. Arstila, E. Vedel, L. Hupa, and M. Hupa, "Factors affecting crystallization of bioactive glasses," Journal of the European Ceramic Society, vol. 27, pp. 1543-1546, // 2007.
17-Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, "45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 2414-2425, 4// 2006.
18-A. R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, and J. Chevalier, "Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics," Faraday discussions, vol. 136, pp. 27-44, 2007.
19-R. Huang, J. Pan, A. Boccaccini, and Q. Chen, "A two-scale model for simultaneous sintering and crystallization of glass–ceramic scaffolds for tissue engineering," Acta biomaterialia, vol. 4, pp. 1095-1103, 2008.
20-O. Bretcanu, C. Samaille, and A. R. Boccaccini, "Simple methods to fabricate Bioglass®-derived glass–ceramic scaffolds exhibiting porosity gradient," Journal of Materials Science, vol. 43, pp. 4127-4134, 2008.
21-L. Lefebvre, L. Gremillard, J. Chevalier, R. Zenati, and D. Bernache-Assolant, "Sintering behaviour of 45S5 bioactive glass," Acta biomaterialia, vol. 4, pp. 1894-1903, 2008.
22-Q. Chen, A. Efthymiou, V. Salih, and A. Boccaccini, "Bioglass®‐derived glass–ceramic scaffolds: Study of cell proliferation and scaffold degradation in vitro," Journal of biomedical materials research Part A, vol. 84, pp. 1049-1060, 2008.
23-S.-C. Wu, H.-C. Hsu, S.-H. Hsiao, and W.-F. Ho, "Preparation of porous 45S5 Bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive," Journal of Materials Science: Materials in Medicine, vol. 20, pp. 1229-1236, 2009.
24-O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson, and A. R. Boccaccini, "Sintering and crystallisation of 45S5 Bioglass® powder," Journal of the European Ceramic Society, vol. 29, pp. 3299-3306, 2009.
25-R. L. Siqueira and E. D. Zanotto, "Facile route to obtain a highly bioactive SiO2–CaO–Na2O–P2O5 crystalline powder," Materials Science and Engineering: C, vol. 31, pp. 1791-1799, 2011.
26-M. Abbasi and B. Hashemi, "Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass," Materials Science and Engineering: C, vol. 37, pp. 399-404, 4/1/ 2014.
27-T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?," Biomaterials, vol. 27, pp. 2907-2915, 2006.
28-J. Gamble, "Physiology and pathology of extracellular fluid—a lecture syllabus," ed: Cambridge: Harvard University Press, 1949.
29-L. A. Adams, E. R. Essien, R. O. Shaibu, and A. Oki, "Sol-gel synthesis of SiO2-CaO-Na2O-P2O5 bioactive glass ceramic from sodium metasilicate," New Journal of Glass and Ceramics, vol. 3, p. 11, 2013.
30-S. Jalota, S. B. Bhaduri, and A. C. Tas, "A new rhenanite (β‐NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 80, pp. 304-316, 2007.
31-P. McMillan, "Glass-ceramics 2nd ed," Non-Metallic Solids, 1979.
32-M. Dziadek, B. Zagrajczuk, E. Menaszek, K. Dziadek, and K. Cholewa-Kowalska, "Poly (ε-caprolactone)-based membranes with tunable physicochemical, bioactive and osteoinductive properties," Journal of Materials Science, vol. 52, pp. 12960-12980, 2017.
33-G. Poologasundarampillai, D. Wang, S. Li, J. Nakamura, R. Bradley, P. Lee, M. Stevens, D. McPhail, T. Kasuga, and J. Jones, "Cotton-wool-like bioactive glasses for bone regeneration," Acta biomaterialia, vol. 10, pp. 3733-3746, 2014.
34-D. Clupper and L. Hench, "Crystallization kinetics of tape cast bioactive glass 45S5," Journal of non-crystalline solids, vol. 318, pp. 43-48, 2003.
_||_