سنتز و شناسایی نانو ذرات مس پایدار از لحاظ شیمیایی در محیطهای آبی با کنترل شکل و اندازه ذرات با روش احیاء شیمیایی درحضور مالئیک اسید و پلی وینیل پیرولیدون
الموضوعات : فصلنامه علمی - پژوهشی مواد نوین
1 - استادیار، گروه شیمی، واحد مرودشت، دانشگاه آزاد اسلامی ، مرودشت، ایران
الکلمات المفتاحية: نانو ذرات مس, مالئیک اسید, هیدرازین, احیاء شیمیایی, محیط آبی,
ملخص المقالة :
در این مقاله، روشی جدید، ساده، کارا و منطبق بر اصول زیستی برای تهیه نانو ذرات بسیار پایدار مس از لحاظ شیمیایی در محیط آبی ارائه شده است. تهیه نانو ذرات هم اندازه مس از طریق واکنشهای کنترل شده احیاء شیمیایی با کاربرد عامل احاطهکننده و سورفکتانت مناسب و جدید صورت میپذیرد. این سنتز با راندمان بالا در محلول آبی و با استفاده از هیدرازین به عنوان یک عامل کاهنده، مالئیک اسید به عنوان سورفاکتانت و پلی وینیل پیرولیدین (PVP) به عنوان یک عامل احاطهکننده انجام میگیرد. برخی از پارامترهای واکنش، مانند مقدار و نوع واکنشدهنده و سورفاکتانت، pH، زمان واکنش و یا میزان حرارتدهی در تولید نانو ذرات پایدار مس و کنترل اندازه و شکل نانو ذرات مؤثر هستند. در این مقاله از روشهای پراش اشعه ایکس (XRD)، اشعه ایکس طیف سنجی فوتوالکترونی (XPS)، طیفسنجی پراش انرژی پرتو ایکس (EDX) و طیف سنجی جذبی فرابنفش و مرئی (UV–VIS) برای شناسایی نانو ذرات مس، استفاده شد. براساس تجزیه و تحلیل دادههای فوق، مشخص شد که نانو ذرات مس شبکه کریستالی مکعب (FCC) را دارا میباشند. نانوساختار مس به دست آمده با استفاده از میکروسکوپ الکترونی عبوری(TEM) ، میکروسکوپ الکترونی روبشی (FESEM) نیز تأیید شدند.
1- M. Salavati-Niasari, F. Davar, N. Mir," Synthesis and characterization of metallic copper nanoparticles via thermal decomposition "Polyhedron Vol 27 ,pp 3514–3518, 2008.
2- J. N. Solanki, R. Sengupta, Z.V.P. Murthy"Synthesis of copper sulphide and copper nanoparticles with microemulsion method" Solid State Sci.Vol 12 , pp1560–1566, 2010.
3- T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, M.C. Dang " Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method " Adv. Nat. Sci., Nanosci. Nanotechnol. Vol 2, pp 015009-015015, 2011.
4- F. Ebrahimzadeh, K. Z. Fung, " One-pot synthesis of size and shape controlled copper nanostructures in aqueous media and their application for fast catalytic degradation of organic dyes" J. Chem. Res., Vol 40, pp 552–557, 2017.
5- Y. Lee, J. Choi, K. J. Lee, N. E. Stott, D. Kim, "Large-scale synthesis of copper nanoparticles by chemically controlled reduction for application of inkjet-printed electronics" Nanotechnology J. Vol 19 , pp 415-604, 2008.
6- K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel," Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water" J. Am. Chem. Soc. Vol 123 ,pp 7797-7803. 2001.
7. H. Ohde, F. Hunt, C. M. Wai," Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion" Chem. Mater. Vol 13, pp 4130-4135, 2001.
8- Y. Zhao, J. J Zhu, J. M Hong, N. Bian, H. Y. Chen " Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with ccontrollable morphology " Eur. J. Inorg. Chem Vol 20, 4072–4080, 2004.
9- H. Zhu, C. Zhang, Y. Yin," “Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size," Nanotechnology Vol 16, pp 3079-3083, 2005.
10- S. Sheibani, A. Ataie, S. Heshmati-Manesh " Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route" J. Alloys Compd. Vol 465,pp 78-82, 2008.
11- S. Magdassi, M. Grouchko , A. Kamyshny " Review copper nanoparticles for printed electronics: routes towards achieving oxidation" Stability Materials Vol 3, pp 4626-4638; 2010.
12- K. B. Male, S. Hrapovic, Y. Liu, D. Wang, J. H.T Luong "Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes" Vol 516, pp 35–41, 2004 .
13- N. Cioffi , L. Torsi , N. Ditaranto , G. Tantillo , L. Ghibelli , L. Sabbatini , T. Bleve-Zacheo , M. D'Alessio , P. G. Zambonin, E. Traversa "Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties" Chem. Mater., Vol 17, pp 5255–5262, 2005.
14- L. Songa, M. G. Vijver, W. J.G.M. Peijnenburga, T. S. Galloway, C.R. Tyler" A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish" Vol 139, pp 181–189, 2015.
15- P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J. D. Evans, C. J. Doonan. Application of metal and metal oxide nanoparticles @ MOFs pp 237–254, 2016.
16- A. Umer, S. Naveed, N, Ramazan "Selection of a suitable method for the synthesis of copper nanoparticles "NANO: Brief Reports and Reviews Vol. 7,pp 1230005 -1230023, 2012.
17- Y. H. Wang, P. L. Chen and M. H. Liu, "Synthesis of well-dened copper nanocubes by a one-pot solution process" Nanotechnology Vol 17,pp 6000-6006, 2006.
18- S. Takayama, G. Link, M. Sato , M. Thumm,"Microwave sintering of metal powder compacts, in Proc. Fourth World Congress on Microwave and Radio Frequency Applications," eds. R. L. Schulz and D. C. Folz (The Microwave Working Group Ltd., Arnold, Maryland, pp. 311-318,2004.
19- L. Y. Chu, Y. Zhuo, L. Dong, L. Li , M. Li, " Controlled synthesis of various hollow Cu nano/micro structures via a novel reduction route "Adv. Funct. Mater. Vol 17 pp 933-938, 2007.
20- L.D. Partain, R.A. Schneider, L.F. Donaghey, P.S. Mcleod, " Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy" J. Appl. Phys. Vol 57, pp 5056, 1985.
21- N.A. Dhas, C.P. Raj, A. Gedanken," Synthesis, characterization, and properties.
_||_