Molecular Characterization of Antibiotic Resistance Genes in Staphylococcus Isolated from Cell Phone Users’ and Non- Users’ Ears
الموضوعات : Report of Health CareTayabe Avazzadeh 1 , Abbas Ali Rezaeian 2 , Shafie Ghorbani Tazhandarreh 3 , Roohollah Zarei Koosha 4 , Davood Ghorbani Tazhandarreh 5 , Abdolhassan Doulah 6
1 - Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
2 - Applied Microbiology Center, Jahrom Branch, Islamic Azad University, Jahrom, Iran
3 - Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
4 - Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
5 - Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
6 - Department of Cellular and Molecular Biology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
الکلمات المفتاحية: Cell Phone, Ear, Erm Genes, Staphylococci,
ملخص المقالة :
Introduction: Resistance to macrolide can be created by erm genes in Staphylococcus. The aim of the current study was to determine whether or not cell phone use can result in the antibiotic resistance of 16S rDNA, Coa, ermA, ermB and ermC genes in Staphylococci isolated from cell phone users’ and non- users’ ears. Methods: A total of 150 isolates of Staphylococci were tested by the disk diffusion method. The isolates were examined by PCR for 16S rDNA, Coa, ermA, ermB and ermC genes. Results: According to PCR results, in two statistical societies, 65.33% cell phone users with positive Coa had only one erm, 33.33% cell phone non-users with negative Coa had only one erm and %1.34 had genes, whereas 24
% cell phone non-users with positive Coa had one erm, %44 cell phone non-users with negative Coa had one erm and 32% had a minority of genes. Results showed that 16S rDNA, Coa, ermA, ermB, and ermC genes in the cell phone users group were more prevalent than the other group in Staphylococci isolated from ears. Conclusion: It is revealed that the presence of 16S rDNA, Coa, and erms genes had a significant relation to erythromycin and methicillin. Detection of ermA, ermB and ermC plays crucial roles in the molecular mechanisms, epidemiology of the efflux pump and methylase erythromycin ribosome. Since antibiotic resistant Staphylococci isolates may mutate and prompt constitutive resistances it is suggested that inducible resistance test should be implemented on erythromycin resistant sensitive isolates to prevent treatment failures.
1. Pal P, Roy A, Moore G, Muzslay M, Lee E, Alder S, et al., Keypad mobile phones are associated with a significant increased risk of microbial contamination compared to touch screen phones. J Infect Prev. 2013; 14 (2): 65- 68.
2. Gillespie SH, Hawkey PM, Peacock S. Staphylococcus aureus in: principles and practice of clinical bacteriology (John Wiley and Sons, Ed.), 2ed edition. England. 2006.
3. Sivaraman K, Venkataraman N, Cole AM. Staphylococcus aureus nasal carriage and its contributing factors. Future Microb. 2009; 4 (8): 999- 1008.
4. Jensen SO, Lyon BR. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microb. 2009; 4 (5): 565- 582.
5. Brooks GF, Morse SA. Medical microbiology. 23 edition. New York MC. Graw Hill. 2004.
6. Winn W, Janda W, Koneman E, Procop G, Schreckenberger P, Wood G. Color atlas and textbook of diagnostic microbiology. 6 th edn. Philadelphia. A Wolters Kluwer Company. 2006.
7. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991; 91 (3B): 72S- 75S.
8. Marchant EA, Boyce GK, Sadarangani M, Lavoie PM. Neonatal sepsis due to coagulase-negative staphylococci. Clin Dev Immunol. 2013; 2013: 586076.
9. Archer GL, Climo MW. Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother. 1994; 38 (10): 2231- 2237.
10. Cinar M, Dede C, Nemut T, Altun I. Bacterial contamination of the mobile phones of nursing students involved in direct patient care. J Society Develop New Net Environment. 2013; 7 (2): 678-681.
11. Eady EA, Ross JI, Tipper JL, Walters CE, Cove JH, Noble WC. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother., 1993; 31 (2): 211- 217.
12. Duval J. Evolution and epidemiology of MLS resistance. J Antimicrob Chemother. 1985; 16: 137- 149.
13. Janosi L, Nakajima Y, Hashimoto H. Characterization of plasmids that confer inducible resistance to 14-membered macrolides and streptogramin type B antibiotics in Staphylococcus aureus. Microbiol Immunol. 1990; 34 (9): 723- 735.
14. Krolewski JJ, Murphy E, Novick RP, Rush MG. Site-specificity of the chromosomal insertion of Staphylococcus aureus transposon Tn554. J Mol Biol. 1981; 152 (1): 19- 33.
15. Nahmias A, Godwin JT, Updyke EL, Hopkins WA. The staphylococcus "80/81 complex: epidemiological and laboratory observations. J Infect Dis. 1961; 109: 211- 222.
16. Horinouchi S, Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982; 150 (2): 804- 814.
17. Iordanescu S. Three distinct plasmids originating in the same Staphylococcus aureus strain. Arch Roum Pathol Exp Microbiol. 1976; 35 (1-2): 111- 118.
18. Lampson BC, Parisi JT. Naturally occurring Staphylococcus epidermidis plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a deleted attenuator. J Bacteriol. 1986; 166 (2): 479- 483.
19. Nimmo GR, Bell JM, Mitchell D, Gosbell IB, Pearman JW, Turnidge JD. Antimicrobial resistance in Staphylococcus aureus in Australian teaching hospitals, 1989-1999. Microb Drug Resist. 2003; 9 (2): 155- 160.
20. Cockerill FR, Alder J, Bradford PA, Dudley MN, Eliopoulos GM, Hardy DJ. M100-S23 performance standards for antimicrobial susceptibility testing; twenty- third informational supplement. CLAI. 2013; 33 (1): 1- 206.
21. Hassanzadeh S, Pourmand MR, Afshar D, Dehbashi S, Mashhadi R. TENT: a rapid DNA extraction method of staphylococcus aureus. Iran J Public Health. 2016; 45 (8): 1093- 1095.
22. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, et al. Insights on evolution of virulence and
resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 2005; 187 (7): 2426- 2438.
23. Yu FT, Li X, Huang J, Xie J, Tu J, et al. Virulence gene profiling and molecular characterization of hospital-acquired Staphylococcus aureus isolates associated with bloodstream infection. Diagn Microbiol Infect Dis. 2012; 74 (4): 363- 368.
24. Vorobieva V, Bazhukova T, Hanssen AM, Caugant DA, Semenova N, Haldorsen BC, et al. Clinical isolates of staphylococcus aureus from the arkhangelsk region, russia: antimicrobial susceptibility, molecular epidemiology, and distribution of panton- valentine leukocidin genes. APMIS. 2008; 116 (10): 877- 887.
25. Shittu AO, Okon K, Adesida S, Oyedara O, Witte W, Strommenger B, et al. Antibiotic resistance and molecular epidemiology of staphylococcus aureus in nigeria. BMC Microbiol. 2011; 11: 92.
26. Okubo T, Iyobe S, Fujiki Y, Sagai H. Antimicrobial activities of macrolides against recent clinical isolates, and analysis of resistant mechanisms. Jpn J Antibiot. 2003; 56 (3): 163- 170.
27. Baddour MM, Abuelkheir MM, Fatani AJ. Trends in antibiotic susceptibility patterns and epidemiology of MRSA isolates from several hospitals in riyadh, saudi arabia. Ann Clin Microbiol Antimicrob. 2006; 5: 30.
28. Liu M, Liu J, Guo Y, Zhang Z. Characterization of virulence factors and genetic background of staphylococcus aureus isolated from peking university people's hospital between 2005 and 2009. Curr Microbiol. 2010; 61 (5): 435- 443.
29. Maple PA, Hamilton- Miller JM, Brumfitt W. World- wide antibiotic resistance in methicillin-resistant staphylococcus aureus. Lancet. 1989; 1 (8637): 537- 540.
30. Tokajian S, Haddad D, Andraos H, Hashwa F, Araj G. Toxins and antibiotic resistance in staphylococcus aureus isolated from a major hospital in lebanon. ISRN Microbiol. 2011; 2011: 812049.
31. Hamze M, Dabboussi F, Daher W, Izard D. Antibiotic resistance of staphylococcus aureus at north lebanon: place of the methicillin resistance and comparison of detection methods. Pathol Biol. 2003; 51 (1): 21- 26.
32. Bischoff WE, Wallis ML, Tucker KB, Reboussin BA, Sherertz RJ. Staphylococcus aureus nasal carriage in a student community: prevalence, clonal relationships, and risk factors. Infect Control Hosp Epidemiol. 2004; 25 (6): 485- 491.
33. Moore PB, Steitz TA. The involvement of RNA in ribosome function. Nature. 2002; 418 (6894): 229- 235.
34. El- Ghodban A, Ghenghesh KS, Marialigeti K, Esahli H, Tawil A. PCR detection of toxic shock syndrome toxin of Staphylococcus aureus from Tripoli, Libya. J Med Microbiol. 2006; 55 (Pt 2): 179- 182.
35. Grayson TH, Cooper LF, Atienzar FA, Knowles MR, Gilpin ML. Molecular differentiation of Renibacterium salmoninarum isolates from worldwide locations. Appl Environ Microbiol. 1999; 65 (3):961- 968.
36. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al. Community-acquired methicillin- resistant staphylococcus aureus carrying panton- valentine leukocidin genes: worldwide emergence. Emerg Infect Dis. 2003; 9 (8): 978- 984.
37. Strominger JL, Park JT, Thompson RE. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem. 1959; 234: 3263- 3268.
38. Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. Detection of macrolide and disinfectant resistance genes in clinical staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 2011; 4: 453.
39. Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Distribution of genes encoding resistance to macrolides, lincosamides and streptogramins among clinical staphylococcal isolates in a turkish university hospital. J Microbiol Immunol Infect. 2010; 43 (6): 524- 529.
40. Saderi H, Emadi B, Owlia P. Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of staphylococcus aureus in tehran, Iran. Med Sci Monit. 2011; 17 (2): BR48- 53.
41. Malachowa N, DeLeo FR. Mobile genetic elements of staphylococcus aureus. Cell Mol Life Sci. 2010; 67 (18): 3057- 3071.
42. Poyart- Salmeron C, Trieu- Cuot P, CarlierC, Courvalin P. Nucleotide sequences specific for Tn1545-like conjugative transposons in pneumococci and staphylococci resistant to tetracycline. Antimicrob Agents Chemother. 1991; 35 (8): 1657- 1660.
43. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I. Whole genome sequencing of meticillin- resistant staphylococcus aureus. Lancet. 2001; 357 (9264): 1225- 1240.
44. Collins J, Rudkin J, Recker M, Pozzi C, O'Gara JP, Massey RC. Offsetting virulence and antibiotic resistance costs by MRSA. ISME J. 2010; 4 (4): 577- 584.