بررسی جزایر حرارتی شهری کلانشهر تبریز با استفاده از دادههای چند زمانه ماهواره LANDSAT8 مبتنی بر روش تحلیل لکه های داغ
الموضوعات :
فصلنامه علمی برنامه ریزی منطقه ای
محمد آزادی مبارکی
1
,
محمود احمدی
2
1 - دانشجوی دکتری آب و هواشناسی شهری، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران، ایران
2 - دانشیار آبوهوا شناسی دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران، ایران
تاريخ الإرسال : 10 الأحد , جمادى الأولى, 1441
تاريخ التأكيد : 18 السبت , شعبان, 1441
تاريخ الإصدار : 17 الإثنين , ربيع الثاني, 1443
الکلمات المفتاحية:
تبریز,
جزیره حرارتی شهری,
شاخص LULC,
شاخص*Getis-ord Gi,
سنجنده TIRS,
ملخص المقالة :
شهرنشینی سریع در تبریز تأثیر قابلتوجهی در محیط حرارتی شهری داشته و این تغییرات بر آبوهوا، محیط و کیفیت زندگی ساکنان تأثیر گذاشته است. پژوهش حاضر باهدف ارزیابی جزایر حرارتی شهری (UHI) تبریز با استفاده از روشهای خودهمبستگی فضایی و ارتباط آن با پارامترهای فیزیکی سطح انجام شد. برای محاسبه شاخص پوشش گیاهی و دمای سطح زمین از روشهای NDVI و الگوریتم پنجره مجزا (Split Window) بر اساس تصاویر سنجندههای TIRS و OLI ماهواره Landsat 8 استفاده شد؛ سپس رابطه بین تغییرات LULC، NDVI و دمای سطح زمین (LST) موردبررسی قرار گرفت؛ برای شناسایی UHI از روشهای خودهمبستگی فضایی Moran’s I و Hot Spot استفاده شد. نتایج نشان داد در کلانشهر تبریز ارتباط معکوس معنیدار در سطح 05/0 بین LST و NDVI وجود دارد. کمینه LST محاسباتی 99/11 و بیشینه آن 49/58 درجه سلسیوس به ترتیب در مناطق مرکزی و شمال غربی شهر بهدستآمده است. همچنین ارزیابی دمای سطح زمین با LULC نیز نشان داده است سطوح نفوذناپذیر به همراه بافت فرسوده شهری مهمترین دلایل تشدید UHI تبریز هستند. روش خودهمبستگی فضایی Moran’s I نشان داد LST شهر تبریز دارای ساختار فضایی بوده یا به عبارتی دارای الگوی خوشهای است و مقدار آن بین 92/0 تا 95/0 متغیر است. UHI تبریز از نوع پیرامونی و مثلثی شکل است که از کانون به جهات بر شدت و وسعت جزایر حرارتی شهری افزوده میشود. بزرگترین UHI شناساییشده در منطقه 6 شهری به دلیل استقرار فرودگاه تبریز است، همچنین وجود زمینهای بایر و بافت فرسوده بیشینه LST را دارا میباشند.
المصادر:
Agarwal, M., & Tandon, A (2010). Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Applied Mathematical Modelling, 34(9), pp: 2520-2530.
Ahmadi, Mahmoud. And Dadashi-Roudbari, Abbasali (2016). “The biophysical effect of compound the formation of urban heat islands (Case Study: Mashhad)”, iranian remote sensing & GIS. 8(3), 39-58.
Ahmadi, Mahmoud. And Dadashi-Roudbari, Abbasali (2017). “The Identification of Urban Thermal Islands based on an Environmental Approach, Case Study: Isfahan Province”, Geography and Environmental Planning. 28(3), 1-20.
Ahmadi, Mahmoud. And Dadashi-Roudbari, Abbasali, and Esfandiari, Neda (2019). “Monitoring the urban heat islands with a Fractal Net Evolution (FNEA) Approach (Case Study: Tehran Metropolis)”, iranian remote sensing & GIS. 11(1), 95-11.
Akbari, H., and Kolokotsa, D (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, pp: 834-842.
Alibakhshi, Z., Ahmadi, M., and Asl, M. F (2020). Modeling Biophysical Variables and Land Surface Temperature Using the GWR Model: Case Study—Tehran and Its Satellite Cities. Journal of the Indian Society of Remote Sensing, 48(1), pp: 59-70.
Almusaed, A (2011): The urban heat island phenomenon upon urban components. In Biophilic and Bioclimatic Architecture (pp. 139-150). Springer, London.
Buyantuyev, A., & Wu, J (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape ecology, 25(1), pp: 17-33.
Dadashi-roudbari, Abbasali. And aliabadi, Kazem (2017). “The Role of Geographic Components on the Temperature Dispersion at Urban Area Using Remote Sensing Techniques Case Study of Mashhad City”, Geographical Planning of Space, 7(24), pp: 131-142.
Fallah Ghalhari, G. F., Dadashi-Roudbari, A. D., And Asadi, M (2016). Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arabian Journal of Geosciences, 9(12), pp: 595.
Feng, X., And Myint, S. W (2016). Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects. Building and Environment, 95, pp: 346-354.
Feng, Y., GAO, C., Tong, X., Chen, S., Lei, Z., and Wang, J (2019). Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China. Remote Sensing, 11(2), pp: 182.
Fischer, M. M., and Getis, a (2009). Handbook of applied spatial analysis: software tools, methods and applications. Springer Science & Business Media.
Guhathakurta, S., and Gober, P (2007). The impact of the Phoenix urban heat island on residential water use. Journal of the American Planning Association, 73(3), pp: 317-329.
Guo, A., Yang, J., Xiao, X., Xia, J., Jin, C., and Li, X (2020). Influences of urban spatial form on urban heat island effects at the community level in China. Sustainable Cities and Society, 53, 101972.
Huang, Q., and Lu, Y (2015). The effect of urban heat island on climate warming in the Yangtze River Delta urban agglomeration in China. International journal of environmental research and public health, 12(8), pp: 8773-8789.
Kayet, N., Pathak, K., Chakrabarty, A., and Sahoo, S (2016). Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modeling Earth Systems and Environment, 2(3), pp: 127.
Lilly Rose, A., & Devadas, M. D (2009, June). ANALYSIS OF LAND SURFACE TEMPERATURE AND LAND USE/LAND COVER TYPES USING REMOTE SENSING IMAGERY-A CASE IN CHENNAI CITY, INDIA. In The seventh International Conference on Urban Clim held on (Vol. 29).
Liu, H., Zhan, Q., Chen, Y., and Wang, J (2018). Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology. Remote Sensing, 10(4), pp: 654.
Liu, L., and Zhang, Y (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), pp: 1535-1552.
Mallick, J., Kant, Y., and Bharath, B. D (2008). Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J. Ind. Geophys. Union, 12(3), pp: 131-140.
Metz, M., Andreo, V., And Neteler, M. (2017). A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote sensing, 9(12), 1333.
mousavi, Mirnajaf., Mohamadi Torkamani, Hojjat., Khedmatzadeh, Ali., Mohammadi, and Mir sadegh. (2020). “An Analysis of Land Use Changes and Thermal Island Formation in Urmia City exclusion Using Remote Sensing”, Regional Planning, Articles in Press.
Oke, T. R (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), pp: 1-24.
Pauleit, S., Ennos, R., and Golding, Y (2005). Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landscape and urban planning, 71(2-4), pp: 295-310.
Priyankara, P., Ranagalage, M., Dissanayake, D. M. S. L. B., Morimoto, T., and Murayama, Y (2019). Spatial Process of Surface Urban Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–2017). Climate, 7(9), pp: 110.
Rezaeei Rad, Hadi., and Rafieyan, Mojtaba (2017). “Estimating the spatial-temporal Changes in intensity of the heat island in Tehran Metropolitan by Using ASTER and Landsat8 Satellite Images”, Regional Planning, 7(27), pp: 47-60.
Rinner, C., & Hussain, M (2011). Toronto’s urban heat island-Exploring the relationship between land use and surface temperature. Remote Sensing, 3(6), pp: 1251-1265.
Rosenfeld, A. H., Akbari, H., Romm, J. J., & Pomerantz, M (1998). Cool communities: strategies for heat island mitigation and smog reduction. Energy and Buildings, 28(1), pp: 51-62.
Sadeghinia, Ali reza., Alijani, Bohlol., and Zeaieanfirouzabadi, Parviz (2013). “Analysis of Spatial - Temporal Structure of the Urban Heat Island in Tehran through Remote Sensing and Geographical Information System”, GEOGRAPHY AND ENVIRONMENTAL HAZARDS, 1(4), pp: 1-17 (In Persian).
Shabani, Morteza., Darvishan, shadman., and Solaimani, Karim (2019). “Investigating the Effects of Land Use Change on Spatiotemporal Patterns of Land Surface Temperature and Thermal Islands (Case Study: Saqqez County)”, Geography and Environmental Planning, 30(1), pp: 37-54 (In Persian).
Sismanidis, P., Keramitsoglou, I., abd Kiranoudis, C. T (2015). A satellite-based system for continuous monitoring of surface urban heat islands. Urban Climate, 14, pp: 141-153.
Sultana, S., and Satyanarayana, A. N. V (2020). Assessment of urbanization and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustainable Cities and Society, 52, pp: 101846.
Sun, S., Xu, X., Lao, Z., Liu, W., Li, Z., García, E. H., and Zhu, J (2017). Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment, 123, pp: 277-288.
Tayebi, safeh (2018). “Analysis and spatial modeling of the effects of urban expansion on the thermal islands of Tehran”, PhD thesis, Faculty Geography, University of Tehran.
Weng, Q., & Yang, S (2004). Managing the adverse thermal effects of urban development in a densely populated Chinese city. Journal of Environmental Management, 70(2), pp: 145-156.
Zhang, H., Qi, Z. F., Ye, X. Y., Cai, Y. B., Ma, W. C., and Chen, M. N (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, pp. pp: 121-133.
Zhang, Y., Chen, L., Wang, Y., Chen, L., Yao, F., Wu, P., and Zhang, T (2015). Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sensing, 7(8), pp: 10737-10762.
Zhao, C., Jensen, J., & Zhan, B (2017). A comparison of urban growth and their influencing factors of two border cities: Laredo in the US and Nuevo Laredo in Mexico. Applied geography, 79, pp: 223-234.
_||_