خاصیت گیاه پالایی تاجریزی در خاک های آلوده به کادمیوم در محیط آب کشت
الموضوعات :
بوم شناسی گیاهان زراعی
فاطمه ابراهیمی
1
,
امین باقیزاده
2
,
شهرام پورسیدی
3
1 - کارشناس ارشد اصلاح نباتات، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان، ایران.
2 - دانشیار گروه بیوتکنولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.
3 - دانشیار دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران.
تاريخ الإرسال : 28 الثلاثاء , شوال, 1437
تاريخ التأكيد : 14 الثلاثاء , رجب, 1438
تاريخ الإصدار : 24 الجمعة , رجب, 1438
الکلمات المفتاحية:
تنش اکسیداتیو,
زیست پالایی,
فلز سنگین,
کشت هیدروپونیک,
گیاه بیش انباشته گر,
ملخص المقالة :
کادمیوم از فلزات سنگین است که در گیاهان تنش اکسیداتیو ایجاد میکند. هدف از این مطالعه تعیین توانایی خاصیت گیاه پالایی تاجریزی در محیط کشت آلوده به کادمیوم بود. آزمایش در شرایط آب کشت و پنج غلظت 0، 100، 200، 400 و 600 میلی مولار کلرید کادمیوم و با سه تکرار در قالب طرح کاملاً تصادفی انجام شد. طول ریشه، ارتفاع گیاه، وزن تر و خشک گیاه، سطح برگ، میزان تجمع کادمیوم و مقدار کلروفیل کل در اندام هوایی بررسی شد. کاربرد کادمیوم، وزن خشک، سطح برگ و میزان کلروفیل کل را کاهش و طول ریشه، طول اندام هوایی و میزان جذب کادمیوم توسط گیاه را افزایش داد. با افزایش غلظت کادمیوم تا 400 میلی مولار، میزان تجمع یون کادمیوم در گیاه افزایش یافت. گیاه تاجریزی حتی در غلظت 600 میلی مولار نیز توانایی گیاه پالایی خود را حفظ کرد. این تغییرات مورفوفیزیولوژیک جهت مقابله گیاه با تنش ناشی از کادمیوم می باشد که سبب حفظ توانایی بقا و رشد نسبی مطلوب گیاه در چنین شرایطی شده و در نتیجه گیاه تاجریزی با تجمع کادمیوم در بافت های خود در پاک سازی محیط نقش مؤثری ایفا می کند. از این جهت می توان از گیاه تاجریزی به عنوان یک گیاه تجمع دهنده کادمیوم، برای رفع آلودگی خاک های مناطق صنعتی استفاده نمود.
المصادر:
Arduini I, Godbold DA, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seeding. Physiologia Plantrum 92(4): 675-680.
Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds). Phytoremediation of Contaminated Soil and Water. Lewis Publishers: Boca Raton 85-108.
Baker AJM, Proctor J (1990) The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematic and Evolution 173(1): 91-108.
Barcelo J, Poschenrieder C )1999) Plant water relations as effected by heavy metal stress: a review. Journal of Plant Nutrition 13(1): 1-37.
Chehregani A, Noori M, LariYazdi H (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety 72(5): 1349-1353.
Chen YX, He YF, Lue YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemospher 50(1): 789-793.
Clemens S (2001) Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212(4): 475-486.
Ebbs SD, Lasat M, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoremediation of cadmium and zinc from a contaminated soil. Journal of Environmental Quality 26(1): 1424-1430.
Fediuk E, Erdi L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. Journal of Plant Physiology 159(3): 265-271.
Haag Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany 50(341): 1827-1835.
Lagrifoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral contents, and activities of stress related enzymes in young maize plants (Zea mays). Plant and Soil 200(1): 241-250.
Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences 59(2): 315-323.
Prasad MN (1995) Cadmium toxicity and tolerance in vascular plants. Environment and Experimental Botany 35(4): 525-545.
Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman province, Iran. Bulletin of Environmental Contamination Toxicology 85(5): 515-519.
Reeves RD, Kruckeberg AR, Adiguzel N, Kramer U (2001) Studies on the flora of serpentine and other metalliferous areas of western Turkey. South African Journal of Science 97(1): 513-517.
Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant and Soil 227(1): 301-306.
SanitdiToppi R, Gabbrielli R (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41(2): 105-130.
Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiologia Plantarum 105(1): 39-44.
Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biologia Plantarum 37: 587-596.
Vasssilev AI, Yordanov T (1995) Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgar L.). Bulgarian Journal of Plant Physiology 21(4): 12-21.
Watson L, Dallwitz MJ (1992 onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Available on-line as <delta-intkey.com/angio/> on 13 March 2017.
_||_
Arduini I, Godbold DA, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seeding. Physiologia Plantrum 92(4): 675-680.
Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds). Phytoremediation of Contaminated Soil and Water. Lewis Publishers: Boca Raton 85-108.
Baker AJM, Proctor J (1990) The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematic and Evolution 173(1): 91-108.
Barcelo J, Poschenrieder C )1999) Plant water relations as effected by heavy metal stress: a review. Journal of Plant Nutrition 13(1): 1-37.
Chehregani A, Noori M, LariYazdi H (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety 72(5): 1349-1353.
Chen YX, He YF, Lue YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemospher 50(1): 789-793.
Clemens S (2001) Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212(4): 475-486.
Ebbs SD, Lasat M, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoremediation of cadmium and zinc from a contaminated soil. Journal of Environmental Quality 26(1): 1424-1430.
Fediuk E, Erdi L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. Journal of Plant Physiology 159(3): 265-271.
Haag Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany 50(341): 1827-1835.
Lagrifoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral contents, and activities of stress related enzymes in young maize plants (Zea mays). Plant and Soil 200(1): 241-250.
Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences 59(2): 315-323.
Prasad MN (1995) Cadmium toxicity and tolerance in vascular plants. Environment and Experimental Botany 35(4): 525-545.
Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman province, Iran. Bulletin of Environmental Contamination Toxicology 85(5): 515-519.
Reeves RD, Kruckeberg AR, Adiguzel N, Kramer U (2001) Studies on the flora of serpentine and other metalliferous areas of western Turkey. South African Journal of Science 97(1): 513-517.
Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant and Soil 227(1): 301-306.
SanitdiToppi R, Gabbrielli R (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41(2): 105-130.
Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiologia Plantarum 105(1): 39-44.
Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biologia Plantarum 37: 587-596.
Vasssilev AI, Yordanov T (1995) Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgar L.). Bulgarian Journal of Plant Physiology 21(4): 12-21.
Watson L, Dallwitz MJ (1992 onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Available on-line as <delta-intkey.com/angio/> on 13 March 2017.