تشخیص قلدری سایبری در شبکه های اجتماعی با یادگیری عمیق مبتنی بر شبکه عصبی CNN و LSTM
الموضوعات : فناوری های نوین در سیستم های توزیع شده و محاسبات الگوریتمی
محسن اقبالی
1
,
کمال میرزائی
2
,
رضا عزیزی
3
1 - دانشجوی دکتری مهندسی کامپیوتر، گروه مهندسی کامپیوتر، واحد میبد، دانشگاه آزاد اسلامی، میبد، ایران
2 - استادیار گروه مهندسی کامپیوتر، واحد میبد، دانشگاه آزاد اسلامی، میبد، ایران
3 - استادیار گروه کامپیوتر، گروه مهندسی کامپیوتر، واحد میبد، دانشگاه آزاد اسلامی، میبد، ایران
الکلمات المفتاحية: شبکه اجتماعی, قلدری سایبری, یادگیری عمیق, شبکه عصبی کانولوشن, شبکه عصبی LSTM,
ملخص المقالة :
یکی از رویکردهای امیدوارکننده در تشخیص زورگویی سایبری استفاده از الگوریتمهای یادگیری ماشین و یادگیری عمیق است. با این حال، تشخیص آزار سایبری در شبکه های اجتماعی پیچیده است و یک الگوریتم یادگیری ماشین و یادگیری عمیق به تنهایی توانایی زیادی برای تشخیص دقیق زورگویی سایبری ندارند. در این مقاله برای تشخیص زورگویی سایبری در ابتدا با سه روش استخراج ویژگیGloVe ، Word2Vec و TF-IDF ویژگی های اولیه متن استخراج می شود. در مرحله دوم انتخاب ویژگی با استفاده از الگوریتم JSO انجام می شود و در نهایت ویژگی های مهم به عنوان ورودی روش 1DCNN و LSTM در نظر گرفته می شود. آزمایشات در مجموعه داده توئیتر و فیس بوک برای تشخیص زورگویی سایبری انجام می شود. آزمایشات نشان می دهد دقت، حساسیت و صحت روش پیشنهادی در تشخیص زورگویی سایبری در مجموعه داده توئیتر به ترتیب برابر 23/98 درصد، 86/97 درصد و 73/97 درصد است. نتایج نشان می دهد روش پیشنهادی نسبت به روشهای CNN، LSTM و BERT در تشخیص زورگویی سایبری دارای دقت بیشتری است.
[1] H. Parlak Sert, & H. Başkale, “Students' increased time spent on social media, and their level of coronavirus anxiety during the pandemic, predict increased social media addiction,” Health Information & Libraries Journal, vol. 40, no. 3, pp. 262-274, 7 Jul 2023, doi: 10.1111/hir.12448.
[2] J. W. Patchin, & S. Hinduja, “Cyberbullying among Asian American youth before and during the COVID‐19 pandemic,” Journal of school health, vol. 93, no. 1, pp. 82-87, 2023, doi: 10.1111/josh.13249.
[3] D. M. H. Kee, A. Anwar, & I. Vranjes, “Cyberbullying victimization and suicide ideation: The mediating role of psychological distress among Malaysian youth,” Computers in Human Behavior, vol. 150, 108000, January 2024, doi: 10.1016/j.chb.2023.108000.
[4] P. J. Macaulay, O. L. Steer, & L. R. Betts, “Bystander intervention to cyberbullying on social media,” In Handbook of Social Media Use Online Relationships, Security, Privacy and Society, vol. 2, pp. 73-99, Academic Press, 2024, doi: 10.1016/B978-0-443-28804-3.00001-6.
[5] E. Mahajan, H. Mahajan, & S. Kumar, “EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media,” Expert Systems with Applications, vol. 236, 121228, Feb 2024, doi: 10.1016/j.eswa.2023.121228
[6] S. M. Fati, A. Muneer, A. Alwadain, & A. O. Balogun, “Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction,” Mathematics, vol. 11, no. 16, 3567, 15 August 2023 ,doi: 10.3390/math11163567.
[7] C. Iwendi, G. Srivastava, S. Khan, & P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,” Multimedia Systems, vol. 29, no. 3, pp. 1839-1852, June 2023, doi: 10.1007/s00530-020-00701-5.
[8] M. Dadvar, & K. Eckert, “Cyberbullying detection in social networks using deep learning based models. In Big Data Analytics and Knowledge Discovery: 22nd International Conference, DaWaK 2020,” Bratislava, Slovakia, September 14–17, 2020, Proceedings 22, Springer International Publishing, pp. 245-255, Sep 2020, doi: 10.1007/978-3-030-59065-9_20.
[9] A. Bozyiğit, S. Utku, & E. Nasibov, “Cyberbullying detection: Utilizing social media features,” Expert Systems with Applications, vol. 179, 115001, 1 October 2021, doi: 10.1016/j.eswa.2021.115001.
[10] T. Mahmud, M. Ptaszynski, J. Eronen, & F. Masui, “Cyberbullying detection for low-resource languages and dialects: Review of the state of the art,” Information Processing & Management, vol. 60, no. 5, 103454, 27 June 2023, doi: 10.1016/j.ipm.2023.103454.
[11] C. Iwendi, G. Srivastava, S. Khan, & P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,”. Multimedia Systems, vol. 29, no. 3, pp. 1839-1852, June 2023, doi: 10.1007/s00530-020-00701-5.
[12] A. Akhter, U. K. Acharjee, M. A. Talukder, M. M. Islam, & M. A. Uddin, “A robust hybrid machine learning model for Bengali cyber bullying detection in social media,” Natural Language Processing Journal, vol. 4, 100027, September 2023, doi: 10.1016/j.nlp.2023.100027.
[13] H. Saini, H. Mehra, R. Rani, G. Jaiswal, A. Sharma, & A. Dev, “Enhancing cyberbullying detection: a comparative study of ensemble CNN–SVM and BERT models,” Social Network Analysis and Mining, vol. 14, no. 1, 2 December 2023, doi: 10.1007/s13278-023-01158-w.
[14] B. A. H. Murshed, J. Abawajy, S. Mallappa, M. A. N. Saif, & H. D. E. Al-Ariki, “DEA-RNN: A hybrid deep learning approach for cyberbullying detection in Twitter social media platform,” IEEE Access, vol. 10, pp. 25857-25871, 23 February 2022, doi: 10.1109/ACCESS.2022.3153675.
[15] A. Kumar, & N. Sachdeva, “A Bi-GRU with attention and CapsNet hybrid model for cyberbullying detection on social media,” World Wide Web, vol. 25, no. 4, pp. 1537-1550, 01 July 2022, doi: 10.1007/s11280-021-00920-4.
[16] A. Dass, & D. K. Daniel, “Cyberbullying Detection on Social Networks using LSTM Model,” In 2022 International Conference on Innovations in Science and Technology for Sustainable Development (ICISTSD), pp. 293-296, IEEE, August 2020, doi: 10.22214/ijraset.2024.60420.
[17] A. Alam, P. Verma, M. Tariq, A. Sarwar, B. Alamri, N. Zahra, & S. Urooj, “Jellyfish search optimization algorithm for mpp tracking of pv system,” Sustainability, vol. 13, no. 21, 11736, 24 October 2021, doi: 10.3390/su132111736.
[18] A. B. Barragán Martín, M. D. M. Molero Jurado, M. D. C. Pérez-Fuentes, M. D. M. Simon Marquez, Á. Martos Martínez, M. Sisto, & J. J. Gazquez Linares, “Study of cyberbullying among adolescents in recent years: A bibliometric analysis,” International journal of environmental research and public health, vol. 18, no. 6, 3016, 15 March 2021, doi: 10.3390/ijerph18063016.
[19] Á. Denche-Zamorano, S. Barrios-Fernandez, C. Galán-Arroyo, S. Sánchez-González, F. Montalva-Valenzuela, A. Castillo-Paredes, ... & P. R. Olivares, “Science mapping: a bibliometric analysis on cyberbullying and the psychological dimensions of the self,” International journal of environmental research and public health, vol. 20, no. 1, 209, 23 December 2022, doi: 10.3390/ijerph20010209.
[20] M. T. Hasan, M. A. E. Hossain, M. S. H. Mukta, A. Akter, M. Ahmed, & S. Islam, “A Review on Deep-Learning-Based Cyberbullying Detection,” Future Internet, vol. 15, no. 5, 179, 11 May 2023, doi: 10.3390/fi15050179.
[21] C. Iwendi, G. Srivastava, S. Khan, & P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,” Multimedia Systems, vol. 29, no. 3, pp. 1839-1852, June 2023, doi: 10.1007/s00530-020-00701-5.
[22] S. Paul, S. Saha, & J. P. Singh, “COVID-19 and cyberbullying: deep ensemble model to identify cyberbullying from code-switched languages during the pandemic,” Multimedia tools and applications, vol. 82, no. 6, pp. 8773-8789, March 2023, doi: 10.1007/s11042-021-11601-9.
[23] B. A. H. Murshed, Suresha, J. Abawajy, M. A. N. Saif, H. M. Abdulwahab, & F. A. Ghanem, “FAEO-ECNN: cyberbullying detection in social media platforms using topic modelling and deep learning,” Multimedia Tools and Applications, vol. 82, no. 30, pp. 46611–46650, December 2023, doi: 10.1007/s11042-023-15372-3.
[24] V. L. Paruchuri, & P. Rajesh, “CyberNet: a hybrid deep CNN with N-gram feature selection for cyberbullying detection in online social networks,” Evolutionary Intelligence, vol. 16, no. 6, pp. 1935-1949, December 2023, doi: 10.1007/s12065-022-00774-3.
[25] S. Giri, & S. Banerjee, “Performance analysis of annotation detection techniques for cyber-bullying messages using word-embedded deep neural networks,” Social Network Analysis and Mining, vol. 13, no. 23, 14 January 2023, doi: 10.1007/s13278-022-01023-2.
[26] M. Al-Hashedi, L. K. Soon, H. N. Goh, A. H. L. Lim, & E. G. Siew, “Cyberbullying Detection Based on Emotion,” IEEE Access, vol. 11, no. 12, pp. 53907-53918, 29 May 2023, doi: 10.1109/ACCESS.2023.3280556.
[27] N. A. Samee, U. Khan, S. Khan, M. M. Jamjoom, M. Sharif, & D. H. Kim, “Safeguarding Online Spaces: A Powerful Fusion of Federated Learning, Word Embeddings, and Emotional Features for Cyberbullying Detection,” IEEE Access, vol. 11, 2 November 2023, doi: 10.1109/ACCESS.2023.3329347.
[28] A. Muneer, A. Alwadain, M. G. Ragab, & A. Alqushaibi, “Cyberbullying Detection on Social Media Using Stacking Ensemble Learning and Enhanced BERT,” Information, vol. 14, no. 8, 467, 18 August 2023, doi: g/10.3390/info14080467.
[29] A. F. Alqahtani, & M. Ilyas, “An Ensemble-Based Multi-Classification Machine Learning Classifiers Approach to Detect Multiple Classes of Cyberbullying,” Machine Learning and Knowledge Extraction, vol. 6, no. 1, pp.156-170, 12 January 2024, doi: 10.3390/make6010009.
[30] L. Xiaoyan, R. C. Raga, & S. Xuemei, “GloVe-CNN-BiLSTM model for sentiment analysis on text reviews,” Journal of Sensors, vol. 2022, no. 1, 22 October 2022, doi: 10.1155/2022/7212366.
[31] P. Sun, J. Wang, & Z. Dong, “CNN–LSTM Neural Network for Identification of Pre-Cooked Pasta Products in Different Physical States Using Infrared Spectroscopy,” Sensors, vol. 23, no. 10, 4815, 17 May 2023, doi: 10.3390/s23104815.
[32] A. Muneer, & S. M. Fati, “A comparative analysis of machine learning techniques for cyberbullying detection on twitter,” Future Internet, vol. 12, no. 11, 187, 29 October 2020, doi: 10.3390/fi12110187.
[33] S.A.R. Zaidi, Suspicious Communication on Social Platforms. [Online]. Available: https://www.kaggle.com/datasets/syedabbasraza/suspicious-communication-on-social-platforms [Accessed on 20 November 2022].