بررسی و تعیین اثر رطوبت، فشار پرس و زمان آسیاب، بر بهبود چگالی و خواص مکانیکی کاربید سیلیسیم
الموضوعات :حسین کیا 1 , پویا پیرعلی 2 , حمیدرضا بهاروندی 3
1 - پژوهشکده مکانیک - دانشکده مهندسی مواد و فناوری های ساخت - دانشگاه صنعتی مالک اشتر
2 - پژوهشکده مکانیک - دانشکده مهندسی مواد و فناوری های ساخت - دانشگاه صنعتی مالک اشتر
3 - پژوهشکده مکانیک - دانشکده مهندسی مواد و فناوری های ساخت - دانشگاه صنعتی مالک اشتر
الکلمات المفتاحية: سل – ژل اکسید مضاعف نقره باتری لیتیوم یون آند تداخلی,
ملخص المقالة :
کاربید سیلیسیم به دلیل استحکام فشاری بالا، قیمت مناسب و دسترسی آسان، از سرامیکهای پرکاربرد خصوصا در ساخت زرهها می¬باشد. اما، تردی زیاد، یکی از مهمترین مشکلات این سرامیکها است که از طریق اضافه کردن افزودنی و یا اصلاح و بهبود فرایند ساخت، می توان آن را کنترل نمود. در این مقاله به بررسی و تعیین روش ساخت و فراوری سرامیک کاربید سیلیسیم با هدف بهبود خواص مکانیکی و کاهش تردی از طریق پارامترهایی همچون فشار پرس، رطوبت و زمان آسیاب پرداخته شده است. مراحل کار شامل؛ طراحی آزمایش، ساخت نمونه و تعیین خواص فیزیکی و مکانیکی و تعیین بهترین حالت با توجه به متغییرهای پاسخ شامل چگالی خام، استحکام خمشی و استحکام فشاری است. نهایتا پس از ساخت نمونه با مقادیر مختلفی از فشار پرس از 30 تا 120 بار، زمان آسیاب از 1 تا 3 ساعت و رطوبت از 4 تا 13 درصد و تعیین چگالی، مقاومت خمشی و مقاومت فشاری آنها، بهترین مقادیر خواص مکانیکی و چگالی در رطوبت 7 درصد، زمان آسیاب 1 ساعت و فشار پرس 120 بار، بدست آمده است. بعد از این مراحل با استفاده از این مقادیر رطوبت، زمان آسیاب و فشار پرس، نمونه اصلی تهیه و در دمای حدود 2000 درجه سانتیگراد پخت میگردد. با تعیین خواص مکانیکی شامل سختی، مدول یانگ، چقرمگی شکست و همچنین چگالی نمونه نهایی بعد از پخت، مشخص میشود که نمونه ساخته شده با شرایط کاری رطوبت، فشار پرس و زمان آسیاب تعیین شده ، بیشترین انطباق را با خواص نامی کاربید سیلیسیم دارد.
[1] Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen & H. Chen, "Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries", Chemical Engineering Journal, vol. 353, pp. 666-678, 2018.
[2] K. Jeong, J. M. Kim, S. Kim & G. Y. Jung, "Carbon‐Nanotube‐Cored Cobalt Porphyrin as a 1D Nanohybrid Strategy for High‐Performance Lithium‐Ion Battery Anodes", Advanced Functional Materials, vol. 29, no. 24, p. 1806937, 2019.
[3] J. R. Miller, "Valuing reversible energy storage", Science, vol. 335, no. 6074, pp. 1312-1313, 2012.
[4] M. Li, J. Lu, Z. Chen & K. Amine, "30 years of lithium‐ion batteries", Advanced Materials, vol. 30, no. 33, p. 1800561, 2018.
[5] Y. G. Guo, J. S. Hu & L. J. Wan, "Nanostructured materials for electrochemical energy conversion and storage devices", Advanced Materials, vol. 20, no. 15, pp. 2878-2887, 2008.
[6] L. Ji, Z. Lin, M. Alcoutlabi & X. Zhang, "Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries", Energy & Environmental Science, vol. 4, no. 8, pp. 2682-2699, 2011.
[7] J. R. Dahn, T. Zheng, Y. Liu & J. Xue, "Mechanisms for lithium insertion in carbonaceous materials", Science, vol. 270, no. 5236, pp. 590-593, 1995.
[8] K. Sato, M. Noguchi, A. Demachi, N. Oki & M. Endo, "A mechanism of lithium storage in disordered carbons", Science, vol. 264, no. 5158, pp. 556-558, 1994.
[9] K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. Van Der Ven & V. Srinivasan, "Lithium diffusion in graphitic carbon," The journal of physical chemistry letters, vol. 1, no. 8, pp. 1176-1180, 2010.
[10] س. ع. حسینی مرادی، ن. قبادی و م. امیرزاده، "ساخت الکترودهای ابرخازنیِ نیکل منگنز اکسید (NiMnO3) نانوصفحهای با استفاده از روش سنتز هیدروترمال،" فرآیندهای نوین در مهندسی مواد، دوره 2، شماره 17، ص 25-33، 1402.
[11] M. Azadfalah, A. Sedghi, A. Mehdikhani & H. Hosseini, "Enhancing Electrochemical Performance of Super capacitors Electrode Using Nickel-Based Metal-Organic", Advanced Processes in Materials Engineering, vol. 3, no. 16, pp. 55-70, 1401. [Online]. Available: http://sanad.iau.ir/fa/Article/1089929.
[12] X. Wu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhangad & J. G. Zhang, "Lithium metal anodes for rechargeable batteries", Energy & Environmental Science, vol. 7, no. 2, pp. 513-537, 2014.
[13] N. Nitta, F. Wu, J. T. Lee & G. Yushin, "Li-ion battery materials: present and future", Materials today, vol. 18, no. 5, pp. 252-264, 2015.
[14] C. J. Orendorff & D. H. Doughty, "Lithium ion battery safety", The Electrochemical Society Interface, vol. 21, no. 2, pp. 35-35, 2012.
[15] S. Scharner, W. Weppner & P. Schmid‐Beurmann, "Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel", Journal of the Electrochemical Society, vol. 146, no. 3, pp. 857-861, 1999.
[16] M. Wagemaker, D. R. Simon, E. Kelder & J. Schoonman, "A kinetic two‐phase and equilibrium solid solution in spinel Li4+ xTi5O12", Advanced Materials, vol. 18, no. 23, pp. 3169-3173, 2006.
[17] J. F. Colin, V. Godbole & P. Novák, "In situ neutron diffraction study of Li insertion in Li4Ti5O12", Electrochemistry communications, vol. 12, no. 6, pp. 804-807, 2010.
[18] N. Kumagai, Y. Koishikawa, S. Komaba & N. Koshiba, "Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery", Journal of the Electrochemical Society, vol. 146, no. 9, p. 3203, 1999.
[19] A. L. Viet, M. Reddy, R. Jose, B. Chowdari & S. Ramakrishna, "Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries", The Journal of Physical Chemistry C, vol. 114, no. 1, pp. 664-671, 2010.
[20] H. Zhang, Y. Wang, P. Liu, S. L. Chou & et al., "Highly ordered single crystalline nanowire array assembled three-dimensional Nb3O7 (OH) and Nb2O5 superstructures for energy storage and conversion applications", ACS nano, vol. 10, no. 1, pp. 507-514, 2016.
[21] V. Pralong, A. R. Munnangi, V. Caignaert & S. Malo, "A new form of LiNbO3 with a lamellar structure showing reversible lithium intercalation", Chemistry of Materials, vol. 23, no. 7, pp. 1915-1922, 2011.
[22] Q. Fan, L. Lei & Y. Sun, "Facile synthesis of a 3D-porous LiNbO 3 nanocomposite as a novel electrode material for lithium ion batteries", Nanoscale, vol. 6, no. 13, pp. 7188-7192, 2014.
[23] J. T. Han, D. Q. Liu, S. H. Song, Y. Kim & J. B. Goodenough, "Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10. 8O30", Chemistry of Materials, vol. 21, no. 20, pp. 4753-4755, 2009.
[24] Y. Lu, J. B. Goodenough, G. K. P. Dathar, G. Henkelman, J. Wu & K. Stevenson, "Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites", Chemistry of Materials, vol. 23, no. 13, pp. 3210-3216, 2011.
[25] G. Li, X. Wang & X. Ma, "Tetragonal VNb 9 O 24.9-based nanorods: a novel form of lithium battery anode with superior cyclability", Journal of Materials Chemistry A, vol. 1, no. 40, pp. 12409-12412, 2013.
[26] J. T. Han & J. B. Goodenough, "3-V full cell performance of anode framework TiNb2O7/spinel LiNi0. 5Mn1. 5O4", Chemistry of materials, vol. 23, no. 15, pp. 3404-3407, 2011.
[27] J. T. Han, Y. H. Huang & J. B. Goodenough, "New anode framework for rechargeable lithium batteries", Chemistry of Materials, vol. 23, no. 8, pp. 2027-2029, 2011.
[28] C. Yang, D. Ma, J. Yang & M. Manawan, "Crystallographic Insight of Reduced Lattice Volume Expansion in Mesoporous Cu2+‐Doped TiNb2O7 Microspheres during Li+ Insertion", Advanced Functional Materials, vol. 33, no. 15, p. 2212854, 2023.
[29] H. Choi, T. Kim & H. Park, "Defect engineering of TiNb2O7 compound for enhanced Li-ion battery anode performances", Electrochimica Acta, vol. 404, p. 139603, 2022.
[30] C. Lei, X. Qin, S. Huang, T. Wei & Y. Zhang, "Mo‐Doped TiNb2O7 Microspheres as Improved Anode Materials for Lithium‐Ion Batteries", ChemElectroChem, vol. 8, no. 17, pp. 3379-3383, 2021.
[31] K. Liu, J. A. Wang, J. Yang, D. Zhao & et al., "Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes", Chemical Engineering Journal, vol. 407, p. 127190, 2021.
[32] A. Shi, Y. Zhang, Sh. Geng, X. Song & et al., "Highly oxidized state dopant induced Nb-O bond distortion of TiNb2O7 for extremely fast-charging batteries", Nano Energy, vol. 123, p. 109349, 2024.
[33] Y. Zhang, M. Zhang, Y. Liu, H. Zhu & et al., "Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries", Electrochimica Acta, vol. 330, p. 135299, 2020.
[34] X. Zhang, Z. Zhang, J. Zhang, W. Mao, K. Bao & Y. Qian, "Nano silver modified TiNb2O7 as high-rate lithium-ion storage materials", Inorganic Chemistry Communications, vol. 151, p. 110422, 2023.
[35] G. Liu, X. Liu, Y. Zhao, X. Ji & J. Guo, "Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery", Materials Letters, vol. 197, pp. 38-40, 2017.
[36] H. Aghamohammadi, N. Hassanzadeh & R. Eslami-Farsani, "A review study on titanium niobium oxide-based composite anodes for Li-ion batteries: Synthesis, structure, and performance", Ceramics International, vol. 47, no. 19, pp. 26598-26619, 2021.
[37] H. Aghamohammadi, R. Eslami-Farsani & H. I. Oskouei, "Electrochemical performance of TiNb2O7/graphene/CNTs hybrid nanocomposites as anode materials for Li-ion batteries", Diamond and Related Materials, vol. 141, p. 110654, 2024.
[38] H. Aghamohammadi & R. Eslami-Farsani, "Effects of calcination parameters on the purity, morphology, and electrochemical properties of the synthesized TiNb2O7 by the solvothermal method as anode materials for Li-ion batteries", Journal of Electroanalytical Chemistry, vol. 917, p. 116394, 2022.
[39] H. I. Oskouei, H. Aghamohammadi & R. Eslami-Farsani, "Electrochemical performance of TiNb2O7 nanoparticles anchored with different contents of MWCNTs as anode materials for Li-ion batteries", Ceramics International, vol. 48, no. 10, pp. 14717-14725, 2022.
[40] H. Aghamohammadi & R. Eslami-Farsani, "Synthesis and electrochemical performance of TiNb2O7 nanoparticles grown on electrochemically prepared graphene as anode materials for Li-ion batteries", Journal of Power Sources, vol. 535, p. 231418, 2022.
[41] Y. Wu, D. Liu, D. Qu & J. Li, "Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries," Chemical Engineering Journal, vol. 438, p. 135328, 2022.
[42] H. Aghamohammadi, N. Hassanzadeh & R. Eslami-Farsani, "A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries", Journal of Alloys and Compounds, vol. 911, p. 165117, 2022.
[43] S. R. Kia & M. Khodaei, "Synthesis of TiNb 2 O 7 by mechanical alloying and subsequent heat treatment as an anode material for Li-ion batteries", in 2023 5th Iranian International Conference on Microelectronics (IICM), 2023: IEEE, pp. 195-198.
[44] G. B. Thiyagarajan, V. Shanmugam, M. Wilhelm, S. Mathur, S. B. Moodakare & R. Kumar, "TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries", Open Ceramics, vol. 6, p. 100131, 2021.
[45] B. Guo, X. Yu, X. G. Sun, M. Chi & et al., "A long-life lithium-ion battery with a highly porous TiNb 2 O 7 anode for large-scale electrical energy storage", Energy & Environmental Science, vol. 7, no. 7, pp. 2220-2226, 2014.
[46] A. Rahmani & M. Khodaei, "Hard and soft templating approaches in evaporative sol-gel synthesis of TiNb2O7 nanostructures as active materials for Li-ion batteries", Journal of Sol-Gel Science and Technology, pp. 1-11, 2024.
[47] L. Hu, C. Lin, C. Wang & Y. Chao, "TiNb2O7 nanorods as a novel anode material for secondary lithium-ion batteries", Functional Materials Letters, vol. 9, no. 06, p. 1642004, 2016.
[48] S. Lou, X. Cheng, Y. Zhao, A. Lushington & et al., "Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability", Nano Energy, vol. 34, pp. 15-25, 2017.
[49] H. Li, Y. Zhang, Y. Tang, F. Zhao & et al., "TiNb2O7 nanowires with high electrochemical performances as anodes for lithium ion batteries", Applied Surface Science, vol. 475, pp. 942-946, 2019.
[50] L. Fei, Y. Xu, X. Wu, Y. Li & et al., "SBA-15 confined synthesis of TiNb 2 O 7 nanoparticles for lithium-ion batteries", Nanoscale, vol. 5, no. 22, pp. 11102-11107, 2013.
[51] H. Li, L. Shen, J. Wang, Sh. Fang & et al., "Three-dimensionally ordered porous TiNb 2 O 7 nanotubes: A superior anode material for next generation hybrid supercapacitors", Journal of Materials Chemistry A, vol. 3, no. 32, pp. 16785-16790, 2015.
[52] K. J. Griffith, I. D. Seymour, M. A. Hope, M. M. Butala, L. K. Lamontagne & et al., "Ionic and electronic conduction in TiNb2O7", Journal of the American Chemical Society, vol. 141, no. 42, pp. 16706-16725, 2019.
[53] Y. Harada, N. Takami, H. Inagaki & Y. Yoshida, "Battery active material, nonaqueous electrolyte battery and battery pack", USA Patent Appl. 13/281,968, 2016.
[54] J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si", Materials research bulletin, vol. 3, no. 1, pp. 37-46, 1968.
[55] J. Tauc, R. Grigorovici & A. Vancu, "Optical properties and electronic structure of amorphous germanium", physica status solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
[56] P. Yu, "Fundamentals of semiconductors", Springer, 2005.
[57] L. Kavan, M. Zukalová, M. Kalbáč & M. Graetzel, "Lithium insertion into anatase inverse opal", Journal of the Electrochemical Society, vol. 151, no. 8, p. A1301, 2004.
[58] P. Roy, S. Berger & P. Schmuki, "TiO2 nanotubes: synthesis and applications", Angewandte Chemie International Edition, vol. 50, no. 13, pp. 2904-2939, 2011.
[59] X. Lu, Z. Jian, Zh. Fang, L. Gu & et al., "Atomic-scale investigation on lithium storage mechanism in TiNb 2O7", Energy & Environmental Science, vol. 4, no. 8, pp. 2638-2644, 2011.
[60] J. Fan, Zh. Chen, Ch. Liang, K. Tao & et al., "10 μm‐Level TiNb2O7 Secondary Particles for Fast‐Charging Lithium‐Ion Batteries", Chemistry–A European Journal, vol. 30, no. 6, p. e202302857, 2024.
[61] Y. Zhang, C. Kang, W. Zhao, B. Sun & et al., "Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries," Energy Storage Materials, vol. 47, pp. 178-186, 2022.