حذف فوتوکاتالیزوری رنگزای رودامین ب توسط SnIn4S8 : بهینهسازی فرآیند به روش سطح پاسخ
الموضوعات :
1 - گروه شیمی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
الکلمات المفتاحية: قلع ایندیوم سولفید, رودامین ب, فرآیند فوتوکاتالیزوری, روش سطح پاسخ, سینتیک,
ملخص المقالة :
در این مطالعه، عملکرد قلع ایندیوم سولفید (SnIn4S8) در حذف فوتوکاتالیزوری رنگزای رودامین ب (RhB) به عنوان یک نمونه از آلایندههای محیط زیست، مورد بررسی قرار گرفت. از طراحی آزمایش به روش سطح پاسخ (RSM) جهت بهینهسازی متغیرهای عملیاتی (غلظت اولیه RhB، مقدار SnIn4S8، pH محلول و زمان تابش نور) استفاده شد. بر اساس نتایج، حداکثر راندمان حذف RhB به مقدار %15/81 در شرایط بهینه حاصل شد. راندمان تئوری حاصل از طراحی آزمایش به روش تجربی نیز تأیید شد (%96/78) و از این طریق، دقت و صحت مدل پیشنهادی مورد تأیید واقع شد. مطالعه سینتیک حذف فوتوکاتالیزوری رنگزای RhB توسط SnIn4S8 نشان داد که فرآیند مذکور از مدل سینتیکی شبه درجه اول با ثابت سرعت min-1 0/047 تبعیت میکند. در واقع، فعالیت فوتوکاتالیزوری چشمگیر SnIn4S8 ناشی از ساختار گل مانند آن است که باعث افزایش جذب فوتونهای نور و جذب سطحی بیشتری از گونه آلاینده میشود.
[1] Sharma, V.K., Feng, M., 2019, Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review, Journal of Hazardous Materials, 372, 3.
[2] Aksu, Z., 2005, Application of biosorption for the removal of organic pollutants: A review, Process Biochemistry, 40, 997.
[3] Forgacs, E., Cserháti, T., Oros, G., 2004, Removal of synthetic dyes from wastewaters: A review, Environment International, 30, 953.
[4] Lim, L.B.L., Priyantha, N., Fang, X.Y., Zaidi, N.M., 2017, Artocarpusodoratissimus peel as a potential adsorbent in environmental remediation to remove toxic Rhodamine B dye, Journal of Materials and Environmental Science, 8, 494.
[5] Zheng, H., Chen, Y., Sun, X., Zheng, X., Zhang, X., Guan, X., 2024, Enhanced photocatalytic performance and mechanism of N-deficiently porous g-C3N4 in organic pollutant degradation, Materials Research Bulletin, 169, 112510.
[6] Adeyemo, A.A., Adeoye, I.O., Bello, O.S., 2017, Adsorption of dyes using different types of clay: A review. Applied Water Science, 7, 543.
[7] Kasperchik, V.P., Yaskevich, A.L., Bil’Dyukevich, A.V., 2012, Wastewater treatment for removal of dyes by coagulation and membrane processes, Petroleum Chemistry, 52, 545.
[8] Kumar, A.N., Reddy, C.N., Mohan, S.V., 2015, Biomineralization of azo dye bearing wastewater in periodic discontinuous batch reactor: Effect of microaerophilic conditions on treatment efficiency, Bioresource Technology, 188, 56.
[9] Khan, M.A., Ahmad, A., Umar, K., Nabi, S.A., 2015, Synthesis, characterization, and biological applications of nanocomposites for the removal of heavy metals and dyes, Industrial & Engineering Chemistry Research, 54, 76.
[10] Zhang, G., Wu, H., Chen, D., Li, N., Xu, Q., Li, H., He, J., Lu, J., 2022, A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application, Green Energy & Environment, 7, 176.
[11] Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., Domen, K., Li, C., 2003, Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method, Chemical Communications, 17, 2142.
[12] Xu, P., Huang, S., Lv, Y., Chen, Y., Liu, M., Fan, H., 2018, Surfactant-assisted hydrothermal synthesis of rGO/SnIn4S8 nanosheets and their application in complete removal of Cr (VI), RSC Advances, 8, 5749.
[13] Zhang, S., Zhang, B., Jiang, Y., Xiao, Y., Zhang, W., Xu, H., Yang, X., Liu, Z., Zhang, J., 2021, In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities, Applied Surface Science, 542, 148618.
[14] Asoubar, S., Mehrizad, A., Behnajady, M.A., Ramazani, M.E., Gharbani, P., 2023, Hexavalent chromium reduction and Rhodamine B degradation by visible-light-driven photocatalyst of stannum indium sulfide-samarium vanadate, npj Clean Water, 27.
[15] Rajabi, H.R., Khani, O., Shamsipur, M., Vatanpour, V., 2013, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation, Journal of Hazardous Materials, 250, 370.
[16] Rajabi, H.R., Farsi, M., 2015, Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application for dye decolorization, Journal of Molecular Catalysis A: Chemical, 399, 53.
[17] Zhao, X., Su, S., Wu, G., Li, C., Qin, Z., Lou, X., Zhou, J., 2017, Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance, Applied Surface Science, 406, 254.
[18] Allahveran, S., Mehrizad, A., 2017, Polyaniline/ZnS nanocomposite as a novel photocatalyst for removal of Rhodamine 6G from aqueous media: Optimization of influential parameters by response surface methodology and kinetic modeling, Journal of Molecular Liquids, 225, 339.
[19] Mehrizad, A., Gharbani, P., 2017, Novel ZnS/carbon nanofiber photocatalyst for degradation of Rhodamine 6G: Kinetics tracking of operational parameters and development of a kinetics model, Photochemistry and Photobiology, 93, 1178.
[20] Ran, R., Meng, X., Zhang, Z., 2016, Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation, Applied Catalysis B: Environmental, 196, 1.