Fatigue Failure and Damage Analysis of an Anti-roll Bar Subjectedto Fatigue Experiments
الموضوعات : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکمحمد شرعیات 1 , امیر گنجیدوست 2
1 - دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی
2 - کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی
الکلمات المفتاحية: Critical plane, Anti-roll bar, Accumulated Damage, High cycle fatigue, Random loading, multi-axial loading,
ملخص المقالة :
The available fatigue theories have been examined using simple specimens subjected to bending or tension-compression loads. Therefore, the stress fields have been generally one or two dimensional. Anti-roll bar is a component belongs to the suspension system of the vehicles. In spite of having simple circular section, due to the having several curvatures, this component experiences a three-dimensional stress field. This component is usually under alternating bending and torsion loads and the fatigue phenomenon is the main cause of its breakage and failure. In the present paper, employing the finite element method and the prepared computer code, the accumulated fatigue damage analysis of the mentioned component is accomplished based on the modified version of the well-known critical plane- type theories for three-dimensional stress fields. Results of the proposed theories are compared with the experimental fatigue results.
[1] Findley W.N., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, J. Eng. Ind., Trans ASME, Vol. 81, Issue 4, 1959, pp. 301–306.
[2] Matake T., An explanation on fatigue limit under combined stress, Bull JSME, Vol. 20, 1977, pp. 257-263.
[3] McDiarmid D.L., Fatigue under out-of-phase bending and torsion, Fatigue Engng Mater Struct, Vol. 9, Issue 6, 1987, pp. 457–475.
[4] McDiarmid D.L, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue and Fracture of Engineering Materials and Structures, Vol. 14, Issue 4, 1991, pp. 429-453.
[5] McDiarmid D.L., A Shear Stress Based Critical-Plane Criterion of Multiaxial fatigue for Design and Life Prediction, Fatigue and Fracture of Engineering Materials and Structures, Vol. 17, Issue 12, 1994, pp. 1475-1485.
[6] Carpinteri A., Brighentri R., Spagnoli A., A fracture plane approach in multiaxial high-cycle fatigue of metals, Fatigue Fract. Eng. Mater. Struct, Vol. 23, 2000, pp. 355-364.
[7] Carpinteri A., Spagnoli A., Multiaxial high-cycle fatigue criterion for hard metals, Int. J. Fatigue, Vol. 23, 2001, pp. 135-145.
[8] Papadopoulos IV, Davoli P, Gorla C., Filippini M., Bernasconi A., A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue, Vol. 19, Issue 3, 1997, pp. 219–235.
[9] Wang Y.Y., Yao W.X., Evaluation and comparison of several multiaxial fatigue criteria, Int. J. Fatigue, Vol. 26, Issue 1, 2004, pp.17-25.
[10] Shariyat M., A fatigue model developed by modification of Gough’s theory, for random non-proportional loading conditions and three dimensional stress fields, Int. J. fatigue, Vol. 30, 2008, pp. 1248-1258.
[11] Shiegly G., Mechanical engineering design. McGraw-Hill, 7th Edition, 2003.
[12] شرعیات م.، اصول طراحی و تحلیل سازه و بدنه خودرو، انتشارات دانشگاه صنعتی خواجه نصیر الدین طوسی، 1388.