Experimental investigation of the effect of suspended nanoparticles into conventional fluid on the heat transfer improvement
الموضوعات : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکارش کریم پور 1 , داود طغرایی 2 , امید علی اکبری 3 , مجید زرین قلم 4 , غلامرضا احمدی شیخ شبانی 5
1 - استادیار، گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
2 - مدرس دانشگاه، عضو هیت علمی دانشگاه ازاد اسلامی خمینی شهر، ریاست دانشکده مهندسی مکانیک دانشگاه ازاد خمینی شهر
3 - باشگاه پژوهشگران جوان و نخبگان، واحد خمینی شهر، دانشگاه آزاد اسلامی، واحد خمینی شهر، ایران.
4 - دانشجوی دکتری، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
5 - باشگاه پژوهشگران جوان و نخبگان، واحد خمینی شهر، دانشگاه آزاد اسلامی، واحد خمینی شهر، ایران.
الکلمات المفتاحية: Nanofluid, increase heat transfer, Heat Exchanger,
ملخص المقالة :
Heat Transfer has special importance in engineering applications. So, researchers have suggested different new idea to increase heat transfer and using nanofluid is one of these methods In recent years, new methods have been used. One of these methods is the use of nanofluids, ., because nanofluids have higher heat transfer potential than base conventional fluids. In this investigation effect of suspended CuO nanoparticles with volume fraction of 0.005 into base water fluid is considered under turbulent flow regime inside double tube counter heat exchanger. It was observed that suspending pre-mentioned amount of nanoparticle augmentate heat transfer capability of conventional water fluid. On the other side, it leads to increase pressure drop and friction factor of water base fluid. Finally they conclude that positive effect of heat transfer augmentation is so stronger than negative effect of increasing pressure drop and friction factor that motivate to utilize this nanofluid in practical applications.
[1] Masuda H., Ebata A., Teramae K., Hishinuma N., Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, Vol 7, 1993, pp 227–233
[2] Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED, 231/MD,Vol 66, 1995, pp99–105
[3] Pak, B.C., and Cho, Y., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Experimental Heat Transfer, 11 (1998) 151–170.
[4] Xuan, Y., and Li, Q., Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer, 125 (2003) pp 151–155.
[5] Wen, D., and Ding, Y., Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47 (2004) pp 5181–5188.
[6] Heris, S.Z., Etemad, S.G., Esfahany, M.N., Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer, 33 (2006) 529.
[7] Heris, S.Z., Esfahany, M.N., Etemad, S.G., Experimental investigation of convective heat transfer of Al2O3/Water nanofluid in circular tube, Int. J. Heat Fluids Flow, 28 (2) (2007) 203.
[8] Duangthongsuk, W., and Wongwises, S., Heat transfer enhancement and pressure drop characteristics of TiO2–Water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer, 52 (2008) pp 2059–2067.
[9] Fotukian, S.M., and Nasr Esfahany M., Experimental study of turbulent convective heat transfer and pressure drop of diluteCuO/Water nanofluid inside a circular tube, International Communications in Heat and Mass Transfer, 37 (2010) pp 214–219.
[10] Amrollahi, A., Rashidi, A.M., Lotfi, R., EmamiMeibodi, M., Kashefi, K., Convection heat transfer of functionalized MWNT in aqueous fluids in laminar andturbulent flow at the entrance region, International Communications in Heat and Mass Transfer, 37 (2010) 717–723.
[11] Hashemi, S.M., and Akhavan-Behabadi, M.A., An empirical study on heat transfer and pressure drop characteristics of CuO–base oilnanofluid flow in a horizontal helically coiled tube under constant heat flux, International Communications in Heat and Mass Transfer, 39 (2012) pp 144–151.
[12] Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault,Convective heat transfer of non Newtonian nanofluids througha uniformly heated circular tube, International Journal of Thermal Sciences, 50 (2011) pp 525-531.
[13] Kayhani, M.H., Soltanzadeh, H., Heyhat, M.M., Nazari, M., Kowsary, F. Experimental study of convective heat transfer and pressure drop ofTiO2/Water nanofluid, International Communications in Heat and Mass Transfer, 39 (2012) pp 456–462.
[14] SyamSundar, L., Ravi Kumar, N.T., Naik, M.T., Sharma, K.V., Effect of full length twisted tape inserts on heat transfer and frictionfactor enhancement with Fe3O4 magnetic nanofluid inside a plain tube:An experimental study, International Journal of Heat and Mass Transfer, 55 (2012) pp 2761–2768.
[15] Blasius, H., Grenzschichten in Flussigkeitenmitkleiner Reibung (German), Z. Math. Phys, 56 (1908) pp 1–37.
[16] Fakoor Pakdaman, M., Akhavan-Behabadi, M.A., Razi, P., An experimental investigation on thermo-physical properties and overallperformance of MWCNT/heat transfer oil nanofluid flow inside verticalhelically coiled tubes, Experimental Thermal and Fluid Science, 40 (2012) pp 103–111.
[17] Abbasian Arani, and A.A., Amani, J., Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–Water nanofluid, Experimental Thermal and Fluid Science, 44 (2013) pp 520–533.