تاثیر فاکتور سلول بنیادی و رتینوئیدها در تمایز سلول های اسپرماتوگونی بافت بیضه رت بالغ مدل آزواسپرمی انسدادی
الموضوعات : فصلنامه زیست شناسی جانوریمهناز نسیمی 1 , اسماعیل فتاحی 2 , سید غلامعلی جورسرایی 3 , مریم غلامی تبار طبری 4 , ابراهیم ذبیحی نیشابوری 5
1 - گروه زیست شناسی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
2 - گروه زیست شناسی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
3 - گروه علوم تشریح، مرکز تحقیقات بهداشت باروری و ناباروری، پژوهشکده سلامت، دانشگاه علوم پزشکی بابل، ایران
4 - گروه مامایی، مرکز تحقیقات باروری بهداشت، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران
5 - گروه فارماکولوژی، مرکز تحقیقات بیولوژی سلولی و مولکولی، پژوهشکده سلامت، دانشگاه علوم پزشکی بابل، ایران
الکلمات المفتاحية: کشت بافت, رت, رتینوئیدها, فاکتور سلول بنیادی, آزواسپرمی انسدادی,
ملخص المقالة :
رتینوئیدها و فاکتور سلول بنیادی نقش مهمی در تکثیر، بقا و تمایز سلول های بنیادی به اسپرم ایفا می کنند. لذا در این مطالعه اثر فاکتور سلول بنیادی و رتینوئیدها بر تکثیر و تمایز سلول های اسپرماتوگونی در لوله های اسپرم ساز بیضه رت بالغ مدل آزواسپرمی انسدادی با استفاده از سیستم کشت بافت مورد ارزیابی قرار گرفته است. قطعات بافت بیضه در محیط کشت مکمل با رتینوئیدها یا فاکتور سلول بنیادی و یا ترکیبی از هر دو در شرایط دمای 5/34 درجه سانتی گراد و دی اکسید کربن 5 درصد به مدت 25، 30 و 35 روز کشت داده شدند. سپس مقاطع بافتی تهیه شده در زمان های مذکور به وسیله رنگ آمیزی پاس و هماتوکسیلین مورد ارزیابی مورفولوژیکی قرار گرفتند. شمارش سلولی در واحد سطح با استفاده از نرم افزارImageJ و تجزیه و تحلیل آماری، با استفاده از آنالیز واریانس یک طرفه، ANOVA و آزمون تعقیبی توکی انجام شد. تعداد سلول های اسپرماتوگونی، اسپرماتوسیت و لایدیگ در روز 25، 30 و 35 کشت و همچنین تعداد سلول اسپرماتید گرد و دراز در روز 35 کشت در بافت بیضه آزواسپرمی انسدادی در مقایسه با گروه های تجربی و کنترل افزایش معنی دار داشتند (001/0>p ). بررسی هیستولوژیک بافت بیضه در شرایط مختلف کشت، تغییرات پاتولوژیک را در سلول های سازنده اپی تلیوم نشان داد. رتینوئیدها در روز 35 کشت در مقایسه با فاکتورهای دیگر در حفظ و تکثیر رده های سلولی فرایند اسپرماتوژنز نقش مؤثرتری داشتند. از آنجائیکه این فاکتورها به تنهایی عامل القا تکثیر و تمایز نیستند، بنابراین بهینه سازی محیط کشت جهت دستیابی به اسپرم بالغ پیشنهاد می شود.
1. Allard E.K., Boekelheide K., 1996. Fate of germ cells in 2,5-hexanedioneinduced testicular injury. II. Atrophy persists due to a reduced stem cell mass and ongoing apoptosis. Toxicol Appl Pharmacol, 137: 149-156.
2. Arkoun B., Dumont L., Milazzo J.P., Way A., Bironneau A., Wils J., Mace B., Rives N., 2015. Retinol improves in vitro differentiation of pre-pubertal mouse spermatogonial stem cells into sperm during the first wave of spermatogenesis. Plos One, 10(2): e0116660.
3. Baker K., Sabanegh Jr E., 2013. Obstructive azoospermia: reconstructive techniques and results. Clinics, 68(S1): 61-73.
4. Bergh A., Collin O., Lissbrant E., 2001. Effects of acute graded reductions in testicular blood flow on testicular morphology in the adult rat. Biology of reproduction, 64(1): 13–20.
5. Bokemeyer C., Kuczyk M.A., Dunn T., Serth J., Hartmann K., Jonasson J., Pietsch T., Jonas U., Schmoll H.J., 1996. Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumours. J Cancer Res Clin Oncol, 122(5): 301-306.
6. Dumont L., Arkoun B., Jumeau F., Milazzo J.P., Bironneau A., Liot D., Wils J., Rondanino C., Rives N., 2015. Assessment of the optimal vitrification protocol for pre-pubertal mice testes leading to successful in vitro production of flagellated spermatozoa. Andrology, 3: 611–625.
7. Duru F.I.O., Ajayi S., Azu O.O., 2013. The effect of unilateral vasectomy on testosterone and testicular parameters in the adult male African giant rat (Cricetomys Gambianus). African Health Sciences, 13(2): 483 - 489.
8. Farias J.G., Bustos-Obregon E., Orellana R., Bucarey J.L., Quiroz E., Reyes J.G., 2005. Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Andrologia, 37(1): 47–52.
9. Ghieh F., Mitchell V., Mandon-Pepin B and Vialard F., 2019. Genetic defects in human azoospermia. Basic and Clinical Andrology, 29: 4.
10. Gholamitabar Tabari M., Jorsaraei S.G.A., Ghasemzadeh-Hasankolaei M., Ahmadi A.A., Amirikia M., 2018. Evaluation of Novel Mouse-Specific Germ Cell Gene Expression in Embryonic Stem Cell-Derived Germ Cell-Like Cells In Vitro with Retinoic Acid Treatment. Cellular reprogramming, 20(4): 245-255.
11. Gohbara A., Katagiri K., Sato T., Kubota Y., Kagechika H., Araki Y., et al., 2010. In vitro murine spermatogenesis in an organ culture system. Biology of Reproduction, 83: 261-267.
12. Grimaldi P., Rossi P., Dolci S., Ripamonti C.B., Geremia R., 2002. Molecular genetics of male infertility: stem cell factor/c-kit system. Am J Reprod Immunol, 48(1): 27-33.
13. Hai Y., Hou J., Liu Y., Liu Y., Yang H., Li Z., He Z., 2014. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol, 29: 66-75.
14. Hasanzadeh S., Najafi G., Pirdehghan H.R., Bonyadi F., 2016. The Effects of Ceftriaxone on Histology, Histomorphometry, and Histochemistry of Testis and Sperm Characteristics in Mice. Qom Univ Med Sci J, 10(6) :1-12.
15.Hogarth C.A., Griswold M.D., 2013. Retinoic acid regulation of male meiosis, Current Opinion in Endocrinology, Diabetes, and Obesity, 20(3): 217-223.
16. Kim K.J., Kim B.G., Kim Y.H., Lee Y.A., Kim B.J., Jung S.E., et al., 2015. In Vitro Spermatogenesis Using Bovine Testis Tissue Culture Techniques. Tissue Engineering and Regenerative Medicine, 12(5): 314-323.
17. Koruji S.M., Movahedin M., Mowla S.J., Gorabi H., Jabari Arfaei A., 2007. The Effects of Inducer Factors on Adult Mouse Spermatogonial Cells Colony Formation In Vitro. Yakhteh Medical Journal,9(2): 141-150.
18. Kovac J.R., Lehmann K.J., Fischer M.A., 2014. A single-center study examining the outcomes of percutaneous epididymal sperm aspiration in the treatment of obstructive azoospermia. Urol Ann, 6: 41–45.
19. Kubota H., Avarbock M.R., Brinster R.L., 2004. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod, 71: 722-731.
20. Lavers Ann E., Swanlund David J., Hunter Brian A., Tran Michael L., Pryor Jon L., Roberts K.P., 2006. Acute Effect of Vasectomy on the Function of the Rat Epididymal Epithelium and Vas Deferens. Andrology, 27: 326-336.
21. Liu F., Cai C., Wu X., Cheng Y., Lin T., Wei G., He D., 2016. Effect of knockOut serum replacement on germ cell development of immature testis tissue culture. Theriogenology, 85: 193–199.
22. Martin D., 1994. Basement Membrane Regulation of Sertoli Cells. Endocrinol Rev, 15: 102–115.
23. Park T.S., Han J.Y., 2000. Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol Reprod Dev, 56: 475-482.
24. Pierce G.B., Nakane P.K., 1969. Basement membranes. Synthesis and deposition in response to cellular injury. Lab Invest, 21(1): 27-41.
25. Poongothai J., Gopenath T.S., Manonayaki S., 2009. Genetics of human male infertility. Singapore Med J, 50(4): 336-347.
26. Qin Q., Liu J., Ma Y., Wang Y.,Zhang F., Gao S., Dong L., 2017. Aberrant expressions of stem cell factor/c-KIT in rat testis with varicocele. Journal of the Formosan Medical Association, 116: 542-548.
27.Reda A., Hou M., Landreh L., Kjartansdottir K.R., Svechnikov K., Soder O., Stukenborg J.B., 2014. In vitro spermatogenesis – optimal culture conditions for testicular cell survival, germ cell differentiation, and steroidogenesis in rats. Front Endocrinol, 5: 21.
28. Reda A., Hou M., Winton T.R., Chapin R.E., Soder O., Stukenborg J.B., 2016. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture. Molecular Human Reproduction, 22(9): 601–612.
29. Russell L.D., Ettlin R.A., Sinha Hikim A.P., Clegg E.D., 2008. Histological and histopathological evaluation of the testis. International Journal of Andrology, 16(1): 83 - 83.
30. Salomon F., Saremaslani P., Jakob M., Hedinger C.E., 1982. Immune complex orchitis in infertile men. Immunoelectron microscopy of abnormal basement membrane structures. Technical Methods and Pathology, 47(6): 555-567.
31. Sato T., Katagiri K., Gohbara A., Inoue K., Ogonuki N., Ogura A., et al., 2011a. In vitro production of functional sperm in cultured neonatal mouse testes. Nature, 471: 504-507.
32. Sato T., Katagiri K., Kojima K., Komeya M., Yao M., and Ogawa T., 2015. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS One, 10(6): e0130171.
33. Schlegel P.N., 2004. Cause of azoospermia and their management. Reproduction, Fertility and Development Journal, 16: 561-572.
34. Skinner M.K., Tung P.S., Fritz I.B.,1985. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol, 100(6): 1941-1947.
35. Steinberger A., Steinberger E., Perloff W.H., 1964. Mammalian Testes in Organ Culture. Experimental Cell Research, 36: 19-27.
36. Steinberger A., Article: M.J., 1975. In vitro techniques for the study of spermatogenesis. Enzymology Journal Article, 39: 283-296.
37. Steinberger E., Steinberger A., Perloff W.H., 1964. Initiation of spermatogenesis in vitro. Endocrinology, 74: 788–792.
38. Travers A., Arkoun B., Safsaf A., Milazzo J.P., Absyte A., et al., 2013. Effects of vitamin A on In Vitro maturation of pre-pubertal mouse spermatogonial stem cells. Plos One, 8(12): e82819.
39.Vernet N., Dennefeld C., Klopfenstein M., et al., 2008. RXR beta expression in Sertoli cells controls cholesterol homeostasis and spermiation. Reproduction,136: 619-626.
40. Wang S., Wang X., Ma L., Lin X., Zhang D., et al., 2016. Retinoic Acid Is Sufficient for the In Vitro Induction of Mouse Spermatocytes. Stem Cell Reports j, 7: 80–94.
41. Yan W., Suominen J and Toppari J., 2000. Stem cell factor protects germ cells from apoptosis in vitro. Journal of Cell Science, 113: 161-168.
42.Yokonishi T., Sato T., Katagiri K., and Ogawa T., 2013. In Vitro Spermatogenesis Using an Organ Culture Technique. Methods in molecular biology, 927: 479-488.
43. Zhang L., Tang J., Haines C.J., Feng H., Teng X., Han Y., 2015. RA induces differentiation of multipotent P19 cells towards male germ cell. In Vitro Cellular and Developmental Biology- Animals, 51: 85-91.
_||_