طراحی، ساخت، مشخصهیابی و ارزیابی زیستی نانوذرات مغناطیسی آهن پوشش داده شده با پلیمر کیتوزان/آلژینات
الموضوعات :
فصلنامه زیست شناسی جانوری
الهام رستمی
1
,
الهام هویزی
2
1 - گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
2 - گروه زیست شناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
تاريخ الإرسال : 17 الإثنين , محرم, 1444
تاريخ التأكيد : 12 الأحد , ربيع الثاني, 1444
تاريخ الإصدار : 07 الأربعاء , صفر, 1445
الکلمات المفتاحية:
اکسید آهن,
کیتوسان,
نانوذرات مغناطیسی,
آلژینات,
بیو پلیمر,
ملخص المقالة :
در سال های اخیر، استفاده از نانوذرات در تشخیص، تحویل دارو و درمان به دلیل کوچک بودن این ذرات و افزایش نسبت سطح به حجم بسیار مورد توجه قرار گرفته است. مهم ترین مشکل زمان درمان سرطان به وسیله ی شیمی درمانی، عدم دسترسی به قسمت های مرکزی توده به علت خون رسانی کمتر آن است. هدف از انجام این پژوهش، بررسی میزان سمیت نانوذره ی اکسید آهن با پوشش بیو پلیمر کیتوزان/آلژینات بر روی سلول های سرطانی ملانوما سلولهای Hep G2 بود. در این پژوهش نانوذرات مغناطیسی آهن با دو بیوپلیمر کیتوسان و آلژینات پوشش داده شد. اندازه و مورفولوژی سطح این نانوذرات توسط دستگاه اندازه گیری سایز و میکروسکوپ الکترونی روبشی بررسی شد همچنین اتصال گروههای عاملی کیتوسان و آلژینات به نانوذرات مغناطیسی آهن توسط دستگاه طیف سنجی مادون قرمز بررسی شد. با استفاده از نانوذرات مغناطیسی آهن و نانوذرات اصلاح شده به مدت 24 ساعت تیمار شده و غلظت IC50 ترکیبات تخمین زده شد. خاصیت توکسیک این نانوذرات با تست MTT و رنگ آمیزی های آکریدین اورنج/ اتیدیوم بروماید مورد ارزیابی قرار گرفت. بررسی عکس های میکروسکوپ الکترونی روبشی و دستگاه اندازه گیری سایز، اندازه ی 50 نانومتر را برای نانوذرات آهن اصلاح شده نشان داد. شکل این نانوذرات کاملاً گرد و کروی مشاهده شد. بررسی های زیستی نانوذرات، قطعاً تاییدکننده ی پوشش دهی موثر نانوذرات بوسیله بیوپلیمرهای کیتوسان و آلژینات بود. بر اساس یافته ها، نانوذرات مغناطیسی آهن به طور وابسته به غلظت اثرات توکسیک بالاتری داشته و غلظت IC50 آنها حدود 134 میکرومولار بر میلی لیتر بود در حالیکه نانوذرات پوشش دار شده به طور معنی داری اثرات توکسیک پایین تری داشته و در غلظت های 25 میکرومولار/میلی لیتر به پایین توکسیسیته معنی داری بر سلولهای Hep G2 نداشتند.
المصادر:
Ankamwar B., Lai T., Huang J., Liu R., Hsiao M., Chen C., Hwu Y. 2010, Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 21(7):075102.
Azar N.T., Mutlu P., Khodadust R., Gunduz U. 2013. Poly (amidoamine) (PAMAM) nanoparticles: Synthesis and biomedical applications. Journal of Biology and Chemistry, 41(3):289‐2
Babaei E., Sadeghizadeh M., Hassan Z.M., Feizi M.A., Najafi F., Hashemi S.M. 2012. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. International Immunopharmacology, 12(1):226‐
Bakhtiary Z., Saei A.A., Hajipour M.J., Raoufi M., Vermesh O., Mahmoudi M. 2016. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine, 12(2):287‐
Beigi F., Fatahian S., Shahbazi Gahrouei D. 2019. In-Vitro Toxicity Assessment of polydopamine-coated and uncoated Fe3o4 nanoparticles in cell line B16-F10 (melanoma cell). Journal of Isfahan University of Medical Sciences,37(533):762-767.
Berry C.C., Wells S., Charles S.., Curtis AS. 2003. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials, 24(25):4551-4557.
Cai W., Wan J. 2007. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. Journal of Colloid and Interface Science, 305(2):366-370.
Calderón M., Quadir M.A., Sharma S.K., Haag R. 2010. Dendritic polyglycerols for biomedical applications. Advanced Materials, 22(2):190218.
Calderón M., Quadir M.A., Strumia M., Haag R. 2010. Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie, 92(9):1242-1251.
Chobot V., Hadacek F., Kubicova L. 2014. Effects of selected dietary secondary metabolites on reactive oxygen species production caused by iron (II) autoxidation. Molecules, 19(12):20023-20033.
Fatahian S., Shahbazi-Gahrouei D., Pouladian M., Yousefi M.H., Amiri G.R., Noori A. 2012. Biodistribution and toxicity assessment of radiolabeled and DMSA coated ferrite nanoparticles in mice. Journal of Radioanalyticcal and Nuclear Chemistry, 293(3): 915-921.
Gautier J., Allard‐Vannier E., Munnier E., Soucé M., Chourpa I. 2013. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. Journal of Controlled Release,169(1‐2):48‐
Gu X. Zhang Y., Sun H. Song X., Fu C., Dong P. 2015. Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. Journal of Nanomaterials, 2015:154592.
Javid, Ahmadian S., Saboury A.A., Kalantar S.M., Rezaei-Zarchi S. 2013. Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chemical Biology and Drug Design, 82(3):296-306.
Liao N., Wu M., Pan F., Lin J., Li Z., Zhang D. 2016. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Scientific Reports, 6:18746.
Majewski A.P., Schallon A., Jerome V., Freitag R., Muller A.H., Schmalz H. 2012. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules, 13(3): 857-866.
Moghimi S.M., Hunter A.C., Murray J.C. 2001. Long‐circulating and target‐specific nanoparticles: Theory to practice. Pharmacological Reviews, 53(2):283‐
Moradi K., Shahbazi-Gahrouei D., Malik Shah Abdul Majid A., Suhaimi J.M., Moradi K.B., Shahbazi-Gahrouei S. 2017. In vitro study of SPIONs-C595 as molecular imaging probe for specific breast cancer (MCF-7) cells detection. Iranian Biomedical Journal, 21(6):360-368.
Munnier E., Cohen‐Jonathan S., Hervé K., Linassier C., Soucé M., Dubois P. 2011. Doxorubicin delivered to MCF‐7 cancer cells by superparamagnetic iron oxide nanoparticles: Effects on subcellular distribution and cytotoxicity. Journal of Nanoparticle Research,13(3):959‐
Pankhurst Q.A., Thanh N.T.K., Jones S.K., Dobson J. 2009. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 42(22):224001.
Shahbazi-Gahrouei D., Moradi K.P., Moradi K.B., Shahbazi-Gahrouei S. 2019. Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings. Journal of Research in Medical Sciences, 24: 38.
Shahbazi-Gahrouei D., Moradi Khaniabadi P., Shahbazi-Gahrouei S., Khorasani A., Mahmoudi F. 2019. A literature review on multimodality molecular imaging nanoprobes for cancer detection. Polish Journal of Medical Physics and Engineering, 25(2):57-68.
Unsoy G., Gunduz U. 2017. Targeted drug delivery via chitosan‐coated magnetic nanoparticles. In: Andronescu E, Grumezescu AM, editors. Nanostructures drug delivery. Amsterdam: Elsevier, Pp:835‐
Veiseh O., Gunn J.W., Zhang M. 2010. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3):284‐
_||_