بررسی تاثیر نانوکاربیدبور بر خواص مکانیکی کامپوزیت B4C-5%vol TiB2 به روش زینتر بدون فشار
الموضوعات :ناهید احمدی 1 , حمیدرضا بهاروندی 2 , ناصر احسانی قمیشلوئی 3
1 - دانشجوی کارشناسی ارشد، مجتمع مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
2 - استادیار، مجتمع مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
3 - دانشیار، مجتمع مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
الکلمات المفتاحية: خواص مکانیکی, کاربید بور, ریزساختار, زینتر بدون فشار,
ملخص المقالة :
در این پژوهش تأثیر افزودن نانوکاربیدبوربر رفتار زینترپذیری و خواص مکانیکی کامپوزیت کاربید بور- دی بورید تیتانیوم بررسی گردید.مقدار صفر، 7، 14 و 20 درصد وزنی نانوکاربیدبور در ترکیب کامپوزیت مورد استفاده قرار گرفت. زینتر بدون فشار در دمای 2200 درجه ی سانتیگراد انجام شد. تحت شرایط آزمایشی این پژوهش، ماکزیمم خواص کامپوزیت کاربید بور با 20 درصد وزنی نانوکاربیدبورحاصل شدبه طوری که دانسیته نسبی برابر با 2/97%، میکرو سختیGPa 9/31، وچقرمگی شکست برابر با MPa.m1/259/3 شد. این نتایج را می توان به افزایش درصد نانوکاربیدبور نسبت داد به این صوت که با افزایش درصد نانوکاربید بور سطح ویژه و نیروی محرکه برای فرایند زینتر افزایش می یابد و نمونه های متراکم تری بدست می آید.کاهش تخلخل بیشترین تاثیر را روی خواص مکانیکی نمونه های کامپوزیتی ایجاد کرد.
[1] H. Baharvandi & A. Hadian, “Pressureless Sintering of TiB2-B4C Ceramic Matrix Composite”, Journal of materials engineering and performance, Vol. 17, No. 6, pp. 838-841, 2008.
[2] A. O. Sezer & J. Brand, “Chemical vapor deposition of boron carbide”, Materials Science and Engineering, Vol. 79B, No. 3, pp. 191-202, 2001.
[3] S. Chen, D. Wang, J. Huang & Z. Ren, “Synthesis and characterization of boron carbide nanoparticles”, Applied Physics, Vol. 79A, No. 7, pp. 1757-1759, 2004.
[4] ع.علیزاده، ع.عبدالهی و ز.نصیری،"مقایسه ریزساختار و خواص مکانیکی نانوکامپوزیت Al-B4C تولید شده به روشهای ریخته گری گردابی، متالورژی پودر و آلیاژسازی مکانیکی"، فصلنامهی علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 8، شماره 1، بهار 1393.
[5] Sinha, T. Mahata & B. Sharma,” Carbothermal route for preparation of boron carbide powder fromboric acid–citric acid gel precursor”, Journal of Nuclear Materials, Vol. 301, No. 2, 2002.
[6] L. Jacobsohn, M. Nastasi, L. Daemen, Z. Jenei & P. Asoka-Kumar, “Positron annihilation spectroscopy of sputtered boron carbide films, Diamond and related materials”, Vol. 14, No. 2, pp. 201-205, 2005.
[7] م. شکوی دیسفانی، م. سعیدی حیدی و ح. بهاروندی، "مروری ب تاثیر کمک سینتهای اکسیدی بر فتار سینترپذیری کامپوزیتهای کاربیدبور(B4C)"، فصلنامهی علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 10، شماره 1، بهار 1395.
[8] D. C. Halverson, “Processing of Boron Carbide-Aluminum Composites”, J. Am. Cerum. Soc., Vol. 72, pp. 775-780, 1989.
[9] D. Gosset & B. Provot, “Boron Carbide as a Potential Inert Matrial”, Progress in Nuclear Energy, Vol. 38, No. 3-4, pp. 263-266, 2001.
[10] M. K. Aghajanian, B. N. Morgan, J. R. Singh J. Mears & R. A. Wolffe, “A New Family of Reaction Bonded Ceramics for Armor Applications”, Pac Rim 4, November 4-8, Maui, Hawaii 1, Paper No. PAC6-H-04-2001.
[11] H. D. Espinosaand & N. S. Brar, “Enhanced Ballistic Performance of Confined Multi-layered Ceramic Targets Against Long Rod Penetrators through Interface Defeat”, Int. J. of solid and structures, Vol. 37, pp. 4893-4913, 2000.
[12] k. kundsen & William Refaniello, “Titanium Diborid Boron Carbide Composites with High Hardness and Toughness”, U. S. Patent 4957884, 1990.
[13] L. Levin, N. Frage & M. P. Dariel, “A novel approach for the preparation of B4C-based cermets”, International Journal of Refractory Metals & Hard Materials, Vol. 18, pp. 131–135, 2000.
[14] L. Z. Pei & H. N. Xiao, “B4C/TiB2 composite powders prepared by carbothermal reduction method”, Journal of Materials Processing Technology, Vol. 209, pp. 2122–2127, 2009.
[15] J. E. Zorzi, C. A. Perottoni & J. A. H. da Jornada, “Hardness and wear resistance of B4C ceramics prepared with several additives”, Materials Letters, Vol. 59, pp. 2932–2935, 2005.
[16] S. G. Huang, K. Vanmeensel, O. Van der Biest & J. Vleugels, “In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering”, Journal of the European Ceramic Society, Vol. 31, pp. 637–644, 2011.
[17] T. S. Srivatsan, G. Guruprasad, D. Black, R. Radhakrishnan & T. S. Sudarshan, “Influence of TiB2 content on microstructure and hardness of TiB2–B4C composite”, Powder Technology, Vol. 159, pp. 161–167, 2005.
[18] X. Y. Yue, S. M. Zhao, P. Lü, Q. Chang & H. Q. Ru, “Synthesis and properties of hot pressed B4C–TiB2 ceramic composite”, Materials Science and Engineering, Vol. 527A, pp. 7215–7219, 2010.
[19] L. Levin, N. Frage & M. P. Dariel, “The Effect of Ti and TiO2 Additions on the Pressureless Sintering of B4C”, Metallurgical and Materials Transactions, Vol. 30A, pp. 3201–3210, 1999.
[20] F. Thevenot, “Boron Carbide-A Comprehensive Review”, J. Euro. Ceram. Soc., Vol. 6, pp. 205-225, 1990.
[21] Cardarelli & Francois, “material Hand book:A concise desktop Reference”, springer, pp. 637, 2008.
[22] K. A. Schwetz & A. Lipp, “Boron Carbide,Boron Nitride and metal Borides”, Uhlmann's Encycl. Indust. Chem, ed. F. T. Cambell, R. Pfefrkon and J. F. Rounsaville, Vol. 4A, pp. 295-307, 1985.
[23] A. D. Oslpov, V. V. Slezov & V. P. Podtykan, “Effect of prosity and grain size on the mechanical properties of hot pressed boron carbide”, american ceramic society, 2008.
[24] R. C. McCuiston & j. c. LaSalvia, “effect of carbon additions B4C particle size on the microstructure and properties of B4C-TiB2composites”, soviet powder metallurgy and metal ceramics, Vol. 21, pp. 55-58, 1982.
[25] R. K. Goyal, A. N. Tiwari & Y. S. Negi, “Microhardness of PEEK/ceramic micro-and nanocomposites:Correlation with Halpin-Tsai model”, Materials Science and Engineering, Vol. 491, pp. 230-236, 2008.
[26] k. kundsen & W. Refaniello, “Titanium Diborid Boron Carbide Composites with High Hardness and Toughness”, U. S. Patent 4957884, 1990.
[27] V. V. Shorokhod, M. D. Vlajic & V. D. Kristic, “Pressureless sintering of B4C – TiB2 ceramic composites”, Materials science forum, Vol. 282-283, pp. 219-224, 1998.
[28] ک. دولت خواه ،"ساخت نانوکامپوزیت زرهی کاربید بور-دی بورید تیتانیوم با استفاده از نانوذرات اکسیدتیتانیوم به روش زینتر بدون اعمال فشار"، دانشگاه صنعتی مالک اشتر، 1388.
[29] B. W. John, W. C. Roger, M. John, “MechanicalPropeties of Ceramics”, John Wiley & Sons, Vol. 2, 2009.
[30] M. Kohler & W. Fritzsche, “Nanotechnolog, An introduction to Nanostructuring Techniques”, Mcgraw-Hill Book Company, 2004.
[31] S. Huang, K. Vanmeensel, O. Malek, O. Van der Biest & J. Vleugels, Microstructure and mechanical sintered B4C–TiB2 composites, Materials Science and Engineering, Vol. 528A, pp. 1302-1309, 2011.