بررسی تاثیر عملیات حرارتی پس از جوشکاری بر خواص خوردگی فصل مشترک اتصال انفجاری ورق های Cu/SS 304
الموضوعات :علی ابراهیمی اکبرآبادی 1 , عباس سعادت 2 , محمدرضا خانزاده 3 , حمید بختیاری 4
1 - کارشناسی ارشد، مرکز فناوری مجلسی، واحد خوراسگان، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - استادیار، دانشکده فنی مهندسی، واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان (اصفهان)، ایران
3 - هیات علمی دانشگاه آزاد اسلامی مبارکه
4 - پژوهشگاه مواد و انرژی، دانشکده مواد، کرج، ایران
الکلمات المفتاحية: جوشکاری انفجاری, گردابه, ضخامت بار انفجاری, تغییر شکل پلاستیکی شدید,
ملخص المقالة :
در تحقیق حاضر به بررسی تاثیر عملیات حرارتی بر رفتار خوردگی و تغییرات ریز ساختاری ورقهای دو لایه فولاد زنگ نزن 304- مس پس از فرآیند جوشکاری انفجاری پرداخته شده است. جوشکاری انفجاری به صورت موازی با بار انفجاری 46 و 63 میلی متر و فاصله توقف 3-2 میلی متر انجام شده است. پس از اعمال جوش انفجاری، فرایند عملیات حرارتی در دمای 350 و 450 درجه سانتیگراد و برای مدت زمانهای نگهداری 8 و 16 ساعت انجام شد. از نتایج آزمون امپدانس الکتروشیمیایی می توان دریافت که عدد n در نمونه عملیات حرارتی شده در دمای 350 درجه سانتیگراد و زمان 8 ساعت کمتر از نمونه عملیات حرارتی شده در دمای 450 درجه سانتیگراد و زمان 8 ساعت است و در نتیجه جریان خوردگی در نمونه عملیات حرارتی شده در دمای 350 درجه سانتیگراد و زمان 8 ساعت بیشتر است که باعث کاهش مقاومت انتقال بار میشود. با مقایسه نمونههای عملیات حرارتی شده در دمای 350 درجه سانتیگراد و زمان 8 ساعت و عملیات حرارتی شده در دمای 450 درجه سانتیگراد و زمان 8 ساعت با دمای آنیل متغیر، زمان آنیل ثابت است و نمونه عملیات حرارتی شده در دمای 450 درجه سانتیگراد و زمان 8 ساعت با بیشتر بودن دمای آنیل دارای عدد n (80/0) بیشتر و پس از آن نمونه عملیات حرارتی شده در دمای 350 درجه سانتیگراد و زمان 8 ساعت (66/0n=) است و علت آن افزایش دمای آنیل و کاهش انرژی ذخیره شده در فصل مشترک است.
- مراجع
[1] B. Crossland, "Explosive Welding of Metals and Its Applications", 1982.
[2] T. Z. Blazynski, "Explosive Welding, Forming and Compaction", 1983.
[3] M. Benak, M. Turna, M. Ozvold, P. Nesvadba, J. Lokaj, L. Caplovic, F. Kovac & V. Stoyka, "Study of Al-austenitic steel boundary formed by explosion welding", Roznov pod Radhostem Czech Republic, EU, vol. 18, 2010.
[4] م. ر. خانزاده قره شیران، ا. اکرامی، ح. عربی، "بررسی تأثیر فاصله توقف بر مورفولوژی و خواص مکانیکی فصل مشترک اتصال انفجاری صفحات سه لایه ضخیم AlMg5-Al-Steel"، فرآیندهای نوین در مهندسی مواد، سال 9، شماره 3، صفحه 77-67، 1394.
[5] م. ر. خانزاده قره شیران، س. ع. ا. اکبری موسوی، ح. بختیاری، "تأثیر عملیات حرارتی بر روی ریزساختار، سختی و استحکام فصل مشترک جوش انفجاری فولاد زنگ نزن 321 به آلومینیوم 1230"، فرایندهای نوین در مهندسی مواد، سال 9، شماره 4، صفحه 41-27، 1394.
[6] م. ر. خانزاده قره شیران، ح. ناظمی، س. سالاری، "بررسی تأثیر فاصله توقف بر رفتار خوردگی اتصال انفجاری ورقهای فولاد زنگ نزن 304- فولاد کربنی CK 45 در محیط دریایی"، فصلنامه علوم و مهندسي خوردگي، سال 10، شماره 9، صفحه 49-39، 1395.
[7] N. Kengkla & N.Tareelap, Proc Conf 1stMae Fah Luang University, 2012.
[8] U. Kamachi Mudali, B. M. Ananda Rao, K. Shanmugam, R. Natarajan & B. Raj, "Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel", Journal of Nuclear Materials, vol. 321, pp. 40-48, 2003.
[9] M. Acarer, "Electrical, corrosion, and mechanical properties of aluminum-copper joints produced by explosive welding", Journal of Materials Engineering and Performance, vol. 21, pp. 2375-2379, 2012.
[10] N. Kahramana & B. Gulenc, "Joining of titanium/stainless steel by explosive welding and effect on interface" Journal of Materials Processing Technology, vol. 169, pp. 127–133, 2005.
[11] N. Kahramana & B. Gulenc, "Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti–6Al–4V and Al plate", International Journal of Impact Engineering, vol. 34, pp. 1423–1432, 2007.
[12] H. R. Zareie Rajani,S. A. A. Akbari Mousavi & F. Madani Sani, "Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates", Materials and Design, vol. 43, pp. 467-474, 2013.
[13] E. E. Stansbury & R. A. Buchanan, "Fundamentals of electrochemical corrosion, asm international", 2000.
[14] A. Davoodi, Z. Esfahani & M. Sarvghad, "Microstructure and corrosion characterization of the interfacial regionin dissimilar friction stir welded AA5083 to AA7023", Corrosion Science, vol. 107, pp.133–144, 2016.
[15] E. Esquivel & L. E. Murr, "Observations of common micro structural issues associated with dynamic deformation phenomena: Twins, micro bands, grain size effects, shear bands, and dynamic recrystallization", Journal of Materials Science, vol. 39, pp.1153-1168, 2004.
[16] M. Meyers, J. C. Lasalvia & V. F. Nesternko, "Dynamic recrystallization in high strain rate deformation", Proceeding of third international conference on recrystallization and related phenomena, pp. 279-286, 1997.
[17] M. A. Meyers, Y. B. Xu, & Q. Xue, "Micro structural evolution in adiabatic shear localization in stainless steel", Acta Materialia, vol. 51, pp. 1307–1325, 2003.
[18] L. E. Murr, E. Ferreyra, S. Pap, J. M. Rivas, C. Kennedy, A. Ayapu, E. I. Garcia, J. C. Sanchez, W. Huang, & C. S. Niou, "Novel deformation processes and microstructures involving ballistic penetrator formation and hypervelocity impact and penetration phenomena", Materials Characterization, vol. 37, pp. 245-276, 1996.
[19] N. Kahraman, B. Gulence, & F. Findik, "Joining of titanium/stainless steel by explosive welding and effect on interface", Journal of Materials Processing Technology, vol. 169, pp. 127-133, 2005.
[20] D. Jaramillo & A. Szecket, "On the transition from a waveless to wavy interface in explosive welding", Materials science and engineering, 1987.
6- پی نوشت
[1] Amatol
[2] TNT
[3] Shock Waves
[4] Energy-dispersive spectroscopy-(EDS)
[5] Tamhankar
[6] Energy-dispersive spectroscopy-(EDS)