تأثیر عملیات حرارتی بر ریزساختار، خواص مکانیکی و رفتار خوردگی قطعات فولاد زنگ نزن دو فازی 2209 تولید شده توسط روش تولید افزودنی مبتنی بر سیم و قوس الکتریک
الموضوعات :علی ملازاده کشکوئی 1 , محمود شریفی تبار 2 , مهدی شفیعی آفارانی 3
1 - کارشناس ارشد مهندسی مواد، گروه مهندسی مواد، دانشگاه سیستان و بلوچستان، زاهدان، ایران.
2 - استادیار، گروه مهندسی مواد، دانشگاه سیستان و بلوچستان، زاهدان، ایران
3 - استاد، گروه مهندسی مواد، دانشگاه سیستان و بلوچستان، زاهدان، ایران.
الکلمات المفتاحية: ریزساختار, فولاد زنگ نزن دوفازی, عملیات حرارتی, تولید افزودنی,
ملخص المقالة :
در این پژوهش به ساخت دیواره فولاد زنگ نزن دوفازی توسط فرآیند تولید افزودنی مبتنی بر سیم و قوس و بررسی ساختار، ریزساختار، خواص مکانیکی و خوردگی آن پرداخته شده است. نتایج آنالیز پراش اشعه ایکس وجود فازهای فریت و آستنیت در ساختار را نشان داد. بررسی های ریزساختاری نشان دهنده توزیع غیریکنواخت فازهای فریت و آستنیت در ریزساختار نمونه پس از تولید بود. جهت بررسی خواص مکانیکی دیواره از آزمون کشش و آزمون میکروسختی در مناطق مختلف دیواره استفاده شد. بر اساس نتایج این آزمون ها، مقدار میانگین استحکام تسلیم و استحکام کششی در راستای جوشکاری به ترتیب در حدود 7/2 و 5/5 درصد بیشتر و مقدار قابلیت تغییر طول در حدود 5/4 درصد کمتر از راستای رسوب گذاری بود. عملیات حرارتی پس از تولید در دمای 1000 درجه سلسیوس به مدت 30 دقیقه موجب ریز شدن دانههای فریت و آستنیت، هم محور شدن ساختار، افزایش درصد آستنیت و بهبود میزان سختی ویکرز از مقدار میانگین 318 به 376 شد. سطح شکست تمامی نمونهها حاکی از مکانیزم شکست نرم بود. نتایج آزمون خوردگی نشان داد که عملیات حرارتی موجب افزایش مقاومت به خوردگی فولاد شد.
[1] C. V. Haden, G. Zeng, F. M. Carter, C. Ruhl, B. A. Krick & D. G. Harlow, "Wire and arc additive manufactured steel: Tensile and wear properties", Additive Manufacturing, vol. 16, pp. 115-123, 2017.
[2] E. Maleki, S. Bagherifard, M. Bandini & M. Guagliano, "Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities", Additive Manufacturing, vol. 37, pp. 101619, 2021.
[3] J. Savolainen & M. Collan, "How Additive Manufacturing Technology Changes Business Models–Review of Literature", Additive Manufacturing, vol. 32, pp. 101070, 2020.
[4] S. Abidaryan, A. H. Behravesh, M. Barmouz & S. K. Hedayati, "Effect of infill percentage and raster angle in fused deposition modeling (FDM) process on shape memory properties of poly (lactic acid) and comparison with compression molding", Iranian Journal of Manufacturing Engineering, vol. 7, no. 5, pp. 14- 23, 2020 [in Persian].
[5]M. Mashhadi, R. Hamzeloo & J. Kadkhodapoor, "Experimental study of the electrochemical corrosion rate of medical implants of titanium and stainless steel made by machining and selective laser melting under different surface conditions", Iranian Journal of Manufacturing Engineering, vol. 4, no. 2, pp. 24-38, 2018 [in Persian].
[6] M. Bhuvanesh Kumar & P. Sathiya, "Methods and materials for additive manufacturing: A critical review on advancements and challenges", Thin-Walled Structures, vol. 159, pp. 107228, 2021.
[7] S. Srivatsav, V. Jayakumar & M. Sathishkumar, "Recent developments and challenges associated with wire arc additive manufacturing of Al alloy: A review", Materials Today: Proceedings, 2021.
[8] N. A. Rosli, M. R. Alkahari, M. F. Abdollah, S. Maidin, F. R. Ramli & S. G. Herawan, "Review on effect of heat input for wire arc additive manufacturing process", Journal of Materials Research and Technology, vol. 11, pp. 2127-2145, 2021.
[9] R. Singh, "Chapter 8 - Stainless Steels, in: R. Singh (Ed.)", Applied Welding Engineering (Second Edition), Butterworth-Heinemann, pp. 83-90, 2016.
[10] Y. Zhang, F. Cheng & S. Wu, "Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment", Materials Characterization, vol. 171, pp. 110743, 2021.
[11] V. T. Le, D. S. Mai, T. K. Doan & H. Paris, "Wire and arc additive manufacturing of 308L stainless steel components: Optimization of processing parameters and material properties", Engineering Science and Technology, an International Journal, vol. 24, no. 4, pp. 1015-1026, 2021.
[12] J. Chen, H. Wei, X. Zhang, Y. Peng, J. Kong & K. Wang, "Flow behavior and microstructure evolution during dynamic deformation of 316 L stainless steel fabricated by wire and arc additive manufacturing", Materials & Design, vol. 198, pp. 109325, 2021.
[13] C. Wang, T. G. Liu, P. Zhu, Y. H. Lu & T. Shoji, "Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing", Materials Science and Engineering: A, vol. 796, pp. 140006, 2020.
[14] A. Caballero, J. Ding, S. Ganguly & S. Williams, "Wire + Arc Additive Manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure", hardness, and tensile strength, Journal of Materials Processing Technology, vol. 268, pp. 54-62, 2019.
[15] X. Zhang, K. Wang, Q. Zhou, J. Ding, S. Ganguly, G. Marzio, D. Yang, X. Xu, P. Dirisu & S. W. Williams, "Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594)", Materials Science and Engineering: A, vol. 762, pp. 138097, 2019.
[16] A. Vahedi Nemani, M. Ghaffari, S. Salahi & A. Nasiri, "Effects of post-printing heat treatment on the microstructure and mechanical properties of a wire arc additive manufactured 420 martensitic stainless steel part", Materials Science and Engineering: A, vol. 813, pp. 141167, 2021.
[17] S. Papula, M. Song, A. Pateras, X. B. Chen, M. Brandt, M. Easton, Y. Yagodzinskyy, I. Virkkunen & H. Hänninen, "Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure", Mechanical Properties, and Corrosion Resistance, Materials (Basel, Switzerland), vol. 12, no. 15, 2019.
[18] A. Rajesh Kannan, N. Siva Shanmugam, V. Rajkumar & M. Vishnukumar, "Insight into the microstructural features and corrosion properties of wire arc additive manufactured super duplex stainless steel (ER2594)", Materials Letters, vol. 270, pp. 127680, 2020.
[19] ASTM E92, "Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials", ASTM International, West Conshohocken, PA, 2017.
[20] ASTM E8 / E8M, "Standard Test Methods for Tension Testing of Metallic Materials, ASTM International", West Conshohocken, PA, 2017.
[21] J. C. Lippold & D. J. Kotecki, "Welding Metallurgy and Weldability of Stainless Steels", Wiley 2005.
]22[ م. رحمانی، م. شمعانیان و م. کثیری، "ارزیابی ریزساختار جوشهای غیرمشابه فولاد زنگ نزن سوپر دوفازی UNS 32750 به فولاد زنگ نزن آستنیتی "AISI 304L، فرآیندهای نوین در مهندسی مواد، دوره 7، شماره 1، صفحه 9-1، 1392.
]23[ م. ح. ترحم نژاد، ر. دهملائی و ص. معینی فر، "تأثیر حرارت ورودی بر ریزساختار، سختی و مقاومت به ضربه اتصالات جوش فولاد زنگ نزن دوفازی 2205 با روش "GTAW ، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 196-179، 1394.
]24[ ر. نیسی و م. شمعانیان، "ارزیابی خواص اتصال فولاد زنگنزن دوفازی UNS S32205 به فولاد زنگنزن آستنیتی AISI 316L با استفاده از فرایند جوشکاری قوسی تنگستن تحت گاز محافظ پالسی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 161-151، 1395.
[25] F. Hejripour, F. Binesh, M. Hebel & D. K. Aidun, "Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel", Journal of Materials Processing Technology, vol. 272, pp. 58-71, 2019.
[26] F. Hengsbach, P. Koppa, K. Duschik, M. J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K. P. Hoyer & M. Schaper, "Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical properties", Materials & Design, vol. 133, pp. 136-142, 2017.
[27] J. Wan, Y. Lou & H. Ruan, "The partition coefficient of alloying elements and its influence on the pitting corrosion resistance of 15Cr-2Ni duplex stainless steel", Corrosion Science, vol. 139, pp. 13-20, 2018.
[28] Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv & J. Zhang, "The impact of annealing temperature on improving microstructure and toughness of electron beam welded duplex stainless steel", Journal of Manufacturing Processes, vol. 31, pp. 568-582, 2018.
[29] L. Q. Guo, M. Li, X. L. Shi, Y. Yan, X. Y. Li & L. J. Qiao, "Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques", Corrosion Science, vol. 53, no. 11, pp. 3733-3741, 2011.
[30] W. S. Tait, "An introduction to electrochemical corrosion testing for practicing engineers and scientists", PairODocs Publications, USA, 1994.
[31] E. S. M. Sherif, "Corrosion behavior of duplex stainless steel alloy cathodically modified with minor ruthenium additions in concentrated sulfuric acid solutions", Int. J. Electrochem. Sci., vol. 6, no. pp. 2284 - 2298, 2011.
[32] E. S. M. Sherif, J. H. Potgieter, J. D. Comins, L. Cornish, P. A., Olubambi & C. N. Machio, "The beneficial effect of ruthenium additions on the passivation of duplex stainless steel corrosion in sodium chloride solutions", Corrosion Science, vol. 51, no. 6, pp. 1364-1371, 2009.
[33] Y. H. Yoo, Y. S. Choi, J. G. Kim & Y. S. Park, "Effects of Ce, La and Ba addition on the electrochemical behavior of super duplex stainless steels", Corrosion Science, vol. 52, no. 4, pp. 1123-1129, 2010.
[34] M. Magnani, M. Terada, A. O. Lino, V. P. Tallo, E. B. D. Fonseca, T. F. A. Santos & A. J. Ramirez, "Microstructural and electrochemical characterization of friction stir welded duplex stainless steels", Int. J. Electrochem. Sci., vol. 9, pp. 2966-2977, 2014.
_||_