ساخت و بررسی خواص داربست (کیتوسان/ پلیوینیلپیرولیدون) حاوی کتیرا به روش خشکاندن انجمادی
الموضوعات :حامد قمی 1 , آزاده سپیانی 2 , مرجان میرحاج 3
1 - استادیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
2 - کارشناسی ارشد، مھندسی بافت، واحد نجف آباد ، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - کارشناسی ارشد،مھندسی پزشکی،
دانشگاه آزاد یزد، یزد، ایران
الکلمات المفتاحية: کتیرا, کیتوسان, اشرشیاکلی, مهندسی بافت پوست, استافیلوکوک اورئوس,
ملخص المقالة :
کیتوسان بعنوان یک جزء ماتریکس خارج سلولی جهت تهیه داربست متخلخل در مهندسی بافت مورد بررسی قرارگرفته است. در این تحقیق، داربست کیتوسان و داربست کیتوسان/ پلیوینیلپیرولیدون بهعنوان شاهد و داربست کامپوزیت (کیتوسان/پلیوینیلپیرولیدون)/ کتیرا با نسبتهای 25:75، 50:50 و 75:25 توسط روش خشکاندن انجمادی ساخته شد. اثر کتیرا بر خواص ساختاری و خواص آنتیباکتریال در نمونهها موردبررسی قرار گرفت. مورفولوژی سطح، خواص مکانیکی، درصد تخلخل و گروههای عاملی بر روی سطح نمونهها با استفاده از میکروسکوپ الکترونی روبشی (SEM)، آزمون استحکام فشاری و FTIR مورد بررسی قرار گرفتند. نتایج نشان داد که درصد تخلخل در داربست حاوی کتیرا نسبت به داربست بدون کتیرا افزایشیافته است. با حفظ نمونهها در محلول بافر فسفات (PBS) برای 14 روز، زیستتخریبپذیری داربستها موردبررسی قرارگرفته شد و نتایج نشان داد میزان تخریب در داربست (کیتوسان / پلیوینیلپیرولیدون) / کتیرا با نسبت 75:25 افزایش یافت. نتایج نشان داد در داربست کیتوسان / پلیوینیلپیرولیدون حاوی کتیرا با نسبت (75:25) رشد باکتری استافیلوکوک اورئوس و E.coli کاهشیافته است. بنابراین بر اساس نتایج این تحقیق، داربستهای حاوی کتیرا باعث بهبود خواص آنتیباکتریایی میگردد.
[1] M. Talikowska, X. Fu & G. Lisak, “Application of conducting polymers to wound care and skin tissue engineering: A review”, Biosensors and Bioelectronics, Vol. 135, pp. 50-63, 2019.
[2] SP. Tarassoli, ZM. Jessop, A. Al-Sabah, N. Gao, S. Whitaker, S. Doak & IS. Whitaker, “Skin tissue engineering using 3D bioprinting: an evolving research field”, Journal of Plastic, Reconstructive & Aesthetic Surgery. Vol. 71, pp. 615-23, 2018.
[3] NA. Ismail, KA. Amin & MH. Razali, “ Novel gellan gum incorporated TiO2 nanotubes film for skin tissue engineering”, Materials Letters, Vol. 228, pp.116-20, 2018.
[4] ZP. Rad, J. Mokhtari & M. Abbasi, “ Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering”, Materials Science and Engineering: C, Vol. 93, pp. 356-66, 2018.
[5] AL. Strong, MW. Neumeister & B. Levi, “ Stem cells and tissue engineering: regeneration of the skin and its contents”, Clinics in plastic surgery, Vol. 44, pp. 635-50, 2017.
]6[ م. رفیعی نیا، ا. یزدانی چم زینی، ب. موحدی، ح. صالحی، " سنتز و ارزیابی سمیت سلولی نانوالیاف شیشهی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"فرآیندهای نوین در مهندسی مواد، شماره 3 ، 145-154، پاییز 1394.
[7] W. Ji, Y. Sun, F. Yang, J. van den Beucken, M. Fan, Z. Chen & J. Jansen, “Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications”, Pharmaceutical research, Vol. 28, pp. 1259-72, 2011.
[8] J. Tan, CK. Chua, K. Leong, K. Chian, W. Leong & L. Tan, “ Esophageal tissue engineering: An in‐depth review on scaffold design” ,Biotechnology and bioengineering, Vol. 109, pp. 1-5, 2012.
[9] A. Gharravi, M. Orazizadeh, M. Hashemitabar, K. Ansari-Asl, S. Banoni, A. Alifard & S. Izadi, “ Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds”, Journal of Biomedical Science and Engineering, Vol. 5, pp. 217, 2012.
[10] F. Mohebichamkhorami & A. Alizadeh, “Skin Substitutes; an Updated Review of Products from Year 1980 to 2017” , Journal of Applied Biotechnology Reports, Vol. 4, pp. 615-23, 2017.
[11] B. Bleasdale, S. Finnegan, K. Murray, S. Kelly & SL. Percival, “ The use of silicone adhesives for scar reduction” , Advances in wound care, Vol. 4, pp. 422-30, 2015.
[12] A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh & S. Pillai, “ Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review” , International journal of molecular sciences, Vol. 17, pp. 1974, 2016.
[13] D. Liang, BS. Hsiao & B. Chu, “ Functional electrospun nanofibrous scaffolds for biomedical applications” , Advanced drug delivery reviews, Vol. 59, pp. 1392-412, 2007.
[14] A. Kara, S. Tamburaci, F. Tihminlioglu & H. Havitcioglu, “ Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering” , International journal of biological macromolecules, Vol. 130, pp. 266-79, 2019.
]15[ ف. حیدری، ر. بازرگان لاری و م. بحرالعلوم، "ساخت و بررسی خواص نانوکامپوزیت طبیعی و زیست سازگار کایتوسن/مگنتیت" فرآیندهای نوین در مهندسی مواد، شماره 3، 256-247، پاییز، 2015.
[16] V. Balan & L. Verestiuc, “ Strategies to improve chitosan hemocompatibility: A review” , European Polymer Journal, Vol. 53, pp. 171-88, 2014.
[17] F. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, “ PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation” , Carbohydrate polymers, Vol. 118, pp.133-42, 2015.
[18] V. Reyna-Urrutia, V. Mata-Haro, J. Cauich-Rodriguez, W. Herrera-Kao & J. Cervantes-Uc, “ Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds” , European Polymer Journal, Vol.117, pp. 424-433, 2019.
[19] V. Bühler, “ Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone” , Springer Science & Business Media, 2005.
[20] N. Mahmoudi & A. Simchi, “ On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide” , Materials Science and Engineering: C, Vol. 70, pp. 121-31, 2017.
[21] R. Dastjerdi & M. Montazer, “ A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties” , Colloids and surfaces B: Biointerfaces, Vol. 79, pp. 5-18, 2010.
[22] E. Tavakkol, H. Tavanai, A. Abdolmaleki & M. Morshed, “ Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers” , Synthetic Metals, Vol. 231, pp. 95-106, 2017.
[23] S. Abbasi & S. Rahimi, “ influence of conerntration, tempera ture, pH, and rotational speed on the flow behavior of iranian gum tragacanth (katira) solution, Iranian journal of food science and technology, Vol. 2, pp. 28-42, 2005.
[24] R. Khajavi, SH. Pourgharbi, A. Kiumarsi & A. Rashidi, “ Gum tragacanth fibers from Astragalus gummifer species: effects of influencing factors on mechanical properties of fibers” , Vol. 7, pp. 2861-2865, 2007.
[25] E. Zare, P. Makvandi & F. Tay, “ Recent progress in the industrial and biomedical applications of tragacanth gum” , Carbohydrate polymers, Vol. 212., pp. 450-467, 2019.
[26] Z. Zarekhalili, S. Bahrami & M. Ranjbar-Mohammadi, Milan PB, “ Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes” , International journal of biological macromolecules, Vol. 94, pp. 679-90, 2017.
[27] M. Ranjbar-Mohammadi, S. Bahrami & M. Joghataei, “ Fabrication of novel nanofiber scaffolds from gum tragacanth/poly (vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties” , Materials Science and Engineering: C, Vol. 33, pp. 4935-43, 2013.
[28] J. Lett, M. Sundareswari, K. Ravichandran, B. Latha & S. Sagadevan, “ Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth” , Materials Science and Engineering: C, Vol. 96, pp. 487-95, 2019.
[29] K. Zheng, P. Balasubramanian, T. Paterson, R. Stein, S. MacNeil, S. Fiorilli, C. Vitale-Brovarone, J. Shepherd & A. Boccaccini, “ Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model” , Materials Science and Engineering: C, Vol. 103, pp.109764, 2019.
[30] A. Nada, A. El Aref & S. Sharaf, “The synthesis and characterization of zinc-containing electrospun chitosan/gelatin derivatives with antibacterial properties” , International journal of biological macromolecules, Vol. 133, pp. 538-44. 2019.
[31] M. Ranjbar-Mohammadi, S. Rabbani, S. Bahrami, M. Joghataei & F. Moayer, “ Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers” , Materials Science and Engineering: C, Vol. 69, pp.1183-91, 2016.
[32] A. Grenha, “Chitosan nanoparticles: a survey of preparation methods” , Journal of drug targeting, Vol. 20, pp. 291-300, 2012.
[33] P. Sankar, G. Rajmohan & M. Rosemary, “ Physico-chemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care” , Materials Letters, Vol. 208, pp. 130-2, 2017.
[34] M. Peter, N. Ganesh, N. Selvamurugan, S. Nair, T. Furuike, H. Tamura & R. Jayakumar, “ Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications” , Carbohydrate Polymers, Vol. 80, pp. 687-94, 2010.
]35[ ا. کدخدائیان حمید، ا. سلاطی, م. انصاری، " استفاده از مهندسی بافت پوست به منظور دستیابی به روشی نوین جهت ساخت یک جایگزین پوستی با استفاده از تثبیت کیتوسان و ژلاتین بر روی فیلم سیلیکونی" مجله علمی دانشگاه علوم پزشکی کردستان، شماره 6، 88-72، زمستان، 1397.
[36] K. Kanimozhi, S. Basha & V. Kumari, “ Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering” , Materials Science and Engineering: C, Vol. 61, pp. 484-91, 2016.
[37] O. Gryshkov, N. Klyui, V. Temchenko, V. Kyselov, A. Chatterjee, A. Belyaev, L. Lauterboeck, D. Iarmolenko & B. Glasmacher, “ Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants” , Materials Science and Engineering: C, Vol. 68, pp.143-52, 2016.
[38] F. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, “ PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation” , Carbohydrate polymers, Vol.118, pp. 133-42, 2015.
[39] N. Johari, M. Fathi & M. Golozar, “ Fabrication, characterization and evaluation of the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering” , Composites Part B: Engineering, Vol. 43, pp. 1671-5, 2012.
[40] K. Kanimozhi, S. Basha &V. Kumari, “ Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering” , Materials Science and Engineering: C, Vol. 61, pp. 484-91, 2016.
[41] S. Talaei & A. Kiani, “ Study on permeability of bionanocomposite film based on Tragacanth gum-Chitosan-Graphene oxide” , Indian Journal of Fundamental and Applied Life Sciences, Vol. 5, pp. 25-31, 2015.
[42] Q. Yao, W. Li, S. Yu, L. Ma & D. Jin, “ Boccaccini AR, Liu Y. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release” , Materials Science and Engineering: C, Vol. 56, pp. 473-80, 2015.
[43] M. Ranjbar-Mohammadi, M. Prabhakaran, S. Bahrami & S.Ramakrishna, “ Gum tragacanth/poly (l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage” , Carbohydrate polymers, Vol. 140, pp. 104-12, 2016.
[44]M. Ranjbar-Mohammadi & S. Bahrami, “ Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds” , Materials Science and Engineering: Vol. 48, pp. 71-9, 2015.
[45] M. Ranjbar-Mohammadi, M. Zamani, M Prabhakaran, S. Bahrami & S. Ramakrishna, “ Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration” , Materials Science and Engineering: C,Vol.58, pp. 521-31, 2016.
[46] R. Jayakumar, M. Prabaharan, S. Nair, S. Tokura, H. Tamura & N. Selvamurugan, “ Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications” , Progress in Materials Science, Vol. 55, pp. 675-709, 2010.
[47] B. Bai, “ Electrospun chitosan nanofibers for virus removal” , 2012.
[48] M. Ranjbar-Mohammadi, S. Rabbani, S. Bahrami, M. Joghataei & F. Moayer, “ Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers” , Materials Science and Engineering: C, Vol. 69, pp. 1183-91, 2016.
[49] W. Sarhan & H. Azzazy, “ High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects” , Carbohydrate polymers, Vol.122, pp.135-43, 2015.
_||_