سنتز نانوذرات مرکب فریتنیکل-کادمیماکسید به روش همرسوبی و بررسی حساسیت آن نسبت به فرمالدئید
الموضوعات :سعید نصوحیان 1 , حمیدرضا ابراهیمی 2 , امیرعباس نوربخش 3 , غلامرضا امیری 4
1 - دانشجوی دکترای مواد، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - دانشیار، مرکز تحقیقات مهندسی پیشرفته، واحد شهر مجلسی، دانشگاه آزاد اسلامی، اصفهان، ایران.
3 - دانشیار، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران.
4 - استادیار، واحد فلاورجان، دانشگاه آزاد اسلامی، اصفهان، ایران.
الکلمات المفتاحية: عملیات, نانوذرات مرکب CdO - NiFe2O4, حساسیتپذیری, گاز فرمالدئید,
ملخص المقالة :
در این مطالعه نانو ذرات مرکب CdO - NiFe2O4 از طریق هم رسوبی تهیه گردید. دو متغیر روش سنتز به ترتیب، شیب دمایی رسیدن به دمای عملیات C°500 شامل C/sec°10، C/sec°35 و C/sec°60 و فشار اکسیژن خالص بهعنوان اتمسفر عملیات بـه مدت 1 ساعت در psi 5/0، psi1 و psi5/1 می بـاشد. بهاینترتیب 9 نمونه به دست می آید که در بین آن ها، نمونه با بهترین پاسخ حسگری به فرمالدئید، مورد مطالعه ساختاری قرار گرفت. برای بررسی ساختار این نانو ذرات، از آزمایش های پراش پرتوایکس، میکروسکوپ الکترونی روبشی، میکروسکوپ الکترونی عبوری و طیف نشری فلوئورسانس پرتوایکس استفاده شده است. آزمون پراش پرتوایکس، تشکیل فازهای فریت نیکل و اکسید کادمیم را تائید میکند. آزمایش های میکروسکوپ الکترونی روبشی و میکروسکوپ الکترونی عبوری، نانو ساختار بودن فریت نیکل و اکسید کادمیم را تائید می نماید. آزمایش طیف نشری فلوئورسانس پرتوایکس، نسبت فرمولی ارائه شده CdO - NiFe2O4 را تائید می کند. خاصیت حسگری CdO - NiFe2O4 در برابر گاز فرمالدئید، در دمای 50 درجه سانتی گراد بررسی شد. برای آزمون حساسیت پذیری نانو حساسه ها از یک سیستم آزمایشگاهی با قابلیت کنترل دما و رطوبت با حجم 5 لیتر بهره گرفته شد. این سیستم مجهز به یک گرم کن حساسه با کنترل دما برای گرم کردن حساسه ها می باشد. برای نانو حساسه با بهترین پاسخ به فرمالدئید، رابطه بین غلظت گاز (از ppm10 تا ppm200) و تغییر مقاومت نانو حساسه مورد بررسی قرار گرفته و به صورت خطی به دست آمد.
[1] I. Polaert, S. Bastien, B. Legras, L. Estel & N. Braidy. "Dielectric and magnetic properties of NiFe2O4at 2.45GHz and heating capacity for potential uses under microwaves", Journal of Magnetism and Magnetic Materials, No. 731-739, pp. 731-739, 2015.
[2]ع. حیدری مقدم، ح. یوزباشی زاده، و. دشتی زاد و ع. کفلو، "سنتز ترکیبی بین فلزی نانوساختار Zr3Co با خاصیت جذب بالا به روش آلیاژسازی مکانیکی"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، ص 40-25، پاییز 1394.
[3] J.G. Webster, "Structural, magnetic and electric properties of multiferroic NiFe2O4-BaTiO3 composites", Journal of Magnetism and Magnetic Materials. 2018.
[4]J. Cai & D.C. Levy, Source Direction Detection based on Stationary Electronic Nose System. World Academy of Science, Engineering and Technology, Vol. 2: p. 717-721. 2008.
[5]G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Vol. 1: Conventional Approaches. Springer Science & Business Media, 2013.
[6]H. R. Ebrahimi, et al., Synthesis, characterizationandgassensitivityinvestigation of Ni0.5Zn0.5Fe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, pp. 55-58. 2016.
[7]M. Xiaomin, Recognition of Toxic Gases Emission in Power Plant Based on Artificial Neural Network. Energy Procedia, Vol. 17: p. 1578-1584. 2012.
[8]S. Yunfen, et al., Study on Gas Sensor of Hybrid Organic Molecule and Sensitive Properties of Toxic Gas. Energy Procedia. Vol. 17: p. 1555-1562. 2012.
[9]N. Bârsan, Transduction in Semiconducting Metal Oxide Based Gas Sensors - Implications of the Conduction Mechanism. Procedia Engineering. Vol. 25: p. 100-103. 2011.
[10]Y. Wang & J.T.W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors. Journal of Sensors, p. 1-24. 2009
[11]A. Sutka, et al., Gas sensing properties of Zn-doped p-type nickel ferrite. Sensors and Actuators B: Chemical, No. 171-172: p. 354-360. 2012.
[12]A. Sutka, et al., Effects of Co ion addition and annealing conditionson nickel ferrite gas response. Sensors and Actuators B: Chemical, Vol. 192: p. 173-180. 2014.
[13]P. Mielle, Managing dynamic thermal exchanges in commercial semiconducting gas sensors. Sensors and Actuators, Vol. 34: p. 533-538. 1996.
[14]H. J. Kim & J. H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical, Vol. 192: p. 607-627. 2014.
[15]G. Jimenez-Cadena, et al. "Gas sensors based on nanostructured materials." Analyst Vol. 132, No. 11, pp: 1083-1099. 2007.
[16]Y. Shimizu & E. Makoto, Basic Aspects and Challenges of Semiconductor Gas Sensors. MRS Bulletin, Vol. 24, No. 6, pp: 18-24. 1999.
[17]C. E. Simion & A. Tomescu-Stănoiu., Differences in the gas sensing properties readout with nand p-type mox materials. IEEE, p: 201-204. 2010.
[18] م. محمودی و م. کاوانلویی، "بهبود ریزساختار و خواص مغناطیسی فریتهای لیتیم تولید شده به روش حالت جامد بوسیله افزودنی نانوسیلیکا"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، 199-204، 1394.
[19]R. C. Singh, M. P. Singh & H. S. Virk, Applications of Nanostructured Materials as Gas Sensors. Solid State Phenomena, Vol. 201, p: 131-158. 2013.
[20]I. E. Gracheva, et al. "Investigations of nanocomposite magnetic materials based on the oxides of iron, nickel, cobalt and silicon dioxide." Journal of Physics and Chemistry of Solids, Vol. 74, No. 5, pp: 656-663. 2013.
[21]T. Sathitwitayakul, et al. "The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis." Materials Letters, Vol. 75, pp: 36-38. 2012.
[22]L. A. Patil, et al., Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sensorsand Actuators B: Chemical, Vol. 176, p: 514-521. 2013.
[23]A. Monshi, "Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD." World Journal of Nano Science and Engineering, Vol. 02, No. 03, pp: 154-160. 2012.
_||_