Immunomodulatory Effect of Propolis on IFN-γ, IL-17A and IL-23 Production in Human Peripheral Blood Mononuclear Cells Treated with Pseudomonas aeruginosa Ag
الموضوعات :
Farah Alaa Alwaeely
1
,
Mohammad Abd kadhum Alsaadi
2
,
Kaiser N. Madlum
3
1 - Department of Microbiology, Faculty of Medicine, Babylon University, Najaf, Iraq
2 - Department of Microbiology, Faculty of Medicine, Babylon, University Hilla, Iraq
3 - Department of Microbiology, Faculty of Medicine, Babylon, University Hilla, Iraq
تاريخ الإرسال : 18 الأحد , شوال, 1442
تاريخ التأكيد : 23 الثلاثاء , محرم, 1443
تاريخ الإصدار : 24 الجمعة , صفر, 1443
الکلمات المفتاحية:
Propolis,
Antibiotic resistance,
IFN-γ,
Pseudomonas aeruginosa immunomodulatory,
IL-17A,
IL-23,
ملخص المقالة :
Propolis has many potential effects on the immune response against P. aeruginosa both cellular and humoral immunity. Aim of this study is to verify the anti-Pseudomonas property of ethanol and water extracted propolis on PBMCs stimulated with P. aeruginosa Ag. In this study a total of (20) apparently healthy volunteers consist of (10) males and (10) females were included, their ages ranged from (20-40) years. Five mL of blood were taken from each included subject for evaluation of IFN-γ, IL-17A and IL-23 in peripheral blood mononuclear cells (PBMCs) that were isolated from blood using density gradient lymphoprep and stimulated with pseudomonas aeruginosa LPS in to four groups, LPS stimulated PBMCs, Ethanol extracted propolis EEP+LPS stimulated PBMCs, water extracted propolis WEP+LPS stimulated PBMCs and control (PBMCs) by ELISA technique after 48Hrs. The results showed that both the EEP and WEP could significantly inhibit pro-inflammatory cytokines production by human PBMC after stimulation with pseudomonas Ag. Propolis exhibits an anti-pseudomonas aeruginosa with the same effect with ethanol and water extracts.
المصادر:
Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S., Benito N., Grau S., 2019. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews. 32(4), e00031-00019.
Chatterjee M., Anju C., Biswas L., Kumar V.A., Mohan C.G., Biswas R., 2016. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. International Journal of Medical Microbiology. 306(1), 48-58.
Guzzo F., Scognamiglio M., Fiorentino A., Buommino E., D’Abrosca B., 2020. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules. 25(21), 5024.
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases. 18(3), 318-327.
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances. 33(8), 1582-1614.
Nigussie D., Davey G., Legesse B.A., Fekadu A., Makonnen E., 2021. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies. 21(1), 1-10.
Anand, U., Jacobo-Herrera, N., Altemimi, A. and Lakhssassi, N., 2019. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites. 9(11), 250-258.
Grecka, K., Kuś, P.M., Okińczyc, P., Worobo, R.W., Walkusz, J. and Szweda, P., 2019. The anti-staphylococcal potential of ethanolic Polish propolis extracts. Molecules. 24(9), 1-9
Paviani L. C., Dariva C., Marcucci M.C., Cabral F.A., 2010. Supercritical carbon dioxide selectivity to fractionate phenolic compounds from the dry ethanolic extract of propolis. Journal of Food Process Engineering. 33(1), 15-27.
Contari G., 1987. Process for the propolis extract preparation. Apicolt Mod. 78, 147-150.
Carlone G.M., Thomas M.L., Rumschlag H.S., Sottnek F.O., 1986. Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. Journal of Clinical Microbiology. 24(3), 330-332.
Boyum A., 1968. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J Clin Lab Invest Suppl. 97, 77.
Sudrajad H., Mudigdo A., Purwanto B., Setiamika M., 2020. Ethanol extract of propolis decreases the Interleukin-8 (IL-8) expression and blood Malondialdehyde (MDA) level in otitis media rat model induced by Pseudomonas aeruginosa. Bali Medical Journal. 9(2), 504-510.
Touzani S., Embaslat W., Imtara H., Kmail A., Kadan S., Zaid H., ElArabi I., Badiaa L., Saad B., 2019. In vitro evaluation of the potential use of propolis as a multitarget therapeutic product: physicochemical properties, chemical composition, and immunomodulatory, antibacterial, and anticancer properties. Bio Med Research International. 2019
Naito Y., Yasumuro M., Kondou K., Ohara N., 2007. Antiinflammatory effect of topically applied propolis extract in carrageenan induced rat hind paw edema. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 21 (5), 452-456.
Pahlavani N., Malekahmadi M., Firouzi S., Rostami D., Sedaghat A., Moghaddam A.B., Ferns G.A., Navashenaq J.G., Reazvani R., Safarian M., 2020. Molecular and cellular mechanisms of the effects of Propolis in inflammation, oxidative stress and glycemic control in chronic diseases. Nutrition & Metabolism. 17(1), 1-12.
Missima F., Pagliarone A., Orsatti C., Araújo Jr J., Sforcin J., 2010. The Effect of propolis on Th1/Th2 cytokine expression and production by melanoma bearing mice submitted to stress. Phytotherapy Research. 24(10), 1501-1507.
Lawrence T., 2009. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology. 1(6), a001651.
Oeckinghaus A., Ghosh S., 2009. The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology. 1(4), a000034.
Parolia A., Thomas M.S., Kundabala M., Mohan M., 2010. Propolis and its potential uses in oral health. International Journal of Medicine and Medical Science. 2(7), 210-215.
Kak G., Raza M., Tiwari B.K., 2018. Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomolecular Concepts. 9(1), 64-79.
Touma, M.M., Jassim, H.S., Hyyawi, S.M., Nayyef, H.J. and Abbas, A.H., The role of IFN-γ and TNF-α IN experimental mastitis. Iraqi Journal of Agricultural Sciences. 52(1), 121-128.
Król W., Czuba Z., Pietsz G., Threadgill M., Cunningham B., 1996. Modulation of the cytotoxic activity of murine macrophages by flavones. Current Topics in Biophysics. 20, 88-93.
Laskin D.L., Pendino K.J., 1995. Macrophages and inflammatory mediators in tissue injury. Annual Review of Pharmacology and Toxicology. 35(1), 655-677.
Tsukazaki, H. Kaito T., 2020. The Role of the IL-23/IL-17 Pathway in the Pathogenesis of Spondyloarthritis. International Journal of Molecular Sciences. 21(17), 6317-6401.
Wonnenberg B., Jungnickel C., Honecker A., Wolf L., Voss M., Bischoff M., Tschernig T., Herr C., Bals R., Beisswenger C., 2016. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immunity. 22(8), 620-625.
Decraene A., Willems-Widyastuti A., Kasran A., De Boeck K., Bullens D. M., Dupont L.J., 2010. Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable cystic fibrosis patients. Respiratory Research. 11(1), 1-8.
Dubin P., McAllister F., Kolls J., 2007. Is cystic fibrosis a TH 17 disease? Inflammation Research. 56(6), 221-227.
Paulino N., Abreu S.R.L., Uto Y., Koyama D., Nagasawa H., Hori H., Dirsch V.M., Vollmar A.M., Scremin A., Bretz W.A., 2008. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. European Journal of Pharmacology. 587(1-3), 296-301.
Cho M.L., Kang J.W., Moon Y.M., Nam H.J., Jhun J.Y., Heo S.B., Jin H.T., Min S.Y., Ju J.H., Park K.S., 2006. STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. The Journal of Immunology. 176(9), 5652-5661.
Santos L.M., Fonseca M.S., Sokolonski A.R., Deegan K.R., Araújo R.P., Umsza Guez M.A., Barbosa J.D.,
32.Portela R.D., Machado B.A., 2020. Propolis: types, composition, biological activities, and veterinary product patent prospecting. Journal of the Science of Food and Agriculture. 100(4), 1369-1382.