Growth and Micronutrient Uptake of Oat Plant (Avena sativa) in Oil Contaminated Soils as Affected by Poultry Manure and Biochar
الموضوعات :
Maryam Barati
1
,
Sedigheh Shirazi
2
1 - Department of Chemical, Petroleum and Gas Engineering, Technical and Vocational University, Tehran, Iran
2 - Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, IranAgriculture Department, Shiraz University, Iran
تاريخ الإرسال : 10 الأحد , شعبان, 1443
تاريخ التأكيد : 27 الثلاثاء , ذو الحجة, 1443
تاريخ الإصدار : 20 الجمعة , شعبان, 1445
الکلمات المفتاحية:
Contaminated soil,
petroleum hydrocarbons,
Oat,
Micronutrient uptake,
Poultry manure biochar,
Dissipation rate,
ملخص المقالة :
The effect of total petroleum hydrocarbons (TPH) levels (4, 6, and 8%), poultry manure (PM), and poultry manure biochar (PMB) on yield, and Cu, Zn, Fe, and Mn uptake in oat plant (Avena sativa) was determined. The results showed that application of 6 and 8% TPHs levels decreased root and shoot dry weight as compared with 4% TPHs level but PM and PMB increased that of parameters. On average, shoot Cu, Zn, Fe, and Mn uptake decreased in oat plants following the application of 6 and 8% TPHs levels as compared with 4% TPH levels. In 8% TPH levels, nutrient uptake significantly reduced by 59.88% for Cu, 52.9% for Zn, 64.61% for Fe, and 62.72% for Mn as compared to 4% TPH levels. However, PMB treatments concluded in an increase in Cu, Zn, Fe and Mn uptake by about 95.5, 47.2, 52.04, and 82.95% in shoot compare with PMB-unamended treatments, and application of PM increased the average of Cu, Zn, Fe, and Mn uptake in oat by 53.46, 31.96, 32.74, and 58.63 % as compared with PM-unamended treatment. It is concluded that the application of PMB and PM in TPHs contaminated soil could significantly improve TPHs dissipation, micronutrient uptake, and growth of oat plants.
المصادر:
Teng Y., Shen Y., Luo Y., Sun X., Sun M., Fu D., Li Z., Christie P. 2011. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons byalfalfa in an aged contaminated soil. J Hazard Mater. 186(2-3), 1271-6. doi: 10.1016/j.jhazmat.2010.11.126.
Khan F.I., Husain T., Hejazi R. 2004. An overview and analysis of site remediation technologies. J Environ Manage. 71(2), 95-122. doi: 10.1016/j.jenvman.2004.02.003.
Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R., Greenberg B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut. 130(3), 465-476. doi: 10.1016/j.envpol.2003.09.031
Xu J.G., Johnson R.L., 1997. Nitrogen dynamics in soils with different hydrocarbon contents planted to barley and field pea. Can J Soil Sci. 77(3), 453-8.
Merkl N., Schultze-Kraft R., Infante C., 2005. Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut. 138(1), 86-91.
Kechavarzi C., Pettersson K., Leeds-Harrison P., Ritchie L., Ledin S., 2007. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Pollut. 145(1), 68-74.
Ayotamuno J.M., Kogbara R.B., 2007. Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. Afr J Biotechnol. 6(11), 1332-1337.
Hutchinson S.L., Schwab A.P., Banks M.K., 2001. Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. J Environ Qual. 30(5), 1516-22. doi:10.2134/jeq2001.3051516x.
Lin Q., Mendelssohn I.A., 1998. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecolo Eng. 10(3), 263-74. doi: 10.1016/S0925-8574 (98)00015-9.
Amadi A., Dickson A.A., Maate G.O., 1993. Remediation of oil polluted soils: 1. Effect of organic and inorganic nutrient supplements on the performance of maize (Zea mays L.). Water Air Soil Pollut. 66(1), 59-76. doi:10.1007/BF00477060.
Lehmann J., Gaunt J., Rondon M., 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strateg Glob Chang. 11(2), 403-27.
Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45(8), 629-34. doi:10.1071/SR07109.
Novak J.M., Busscher W.J., Laird D.L., Ahmedna M., Watts D.W., Niandou M.A., 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174(2), 105-12.
Major J., Steiner C., Downie A., Lehmann J., 2012. Biochar effects on nutrient leaching. In: Biochar for environmental management. Routledge. pp. 303-320.
Yuan J.H., Xu R.K., 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage. 27(1), 110-115. doi:10.1111/j.1475-2743.2010.00317.x.
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D., 2011. Biochar effects on soil biota–a review. Soil Biol Biochem. 43(9), 1812-36. doi: 10.1016/j.soilbio.2011.04.022.
Paz-Ferreiro J., Lu H., Fu S., Mendez A., Gasco G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth. 5(1), 65-75. doi:10.5194/se-5-65-2014.
Karhu K., Mattila T., Bergström I., Regina K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding Capacity-Results from a short-term pilot field study. Agric Ecosyst Environ. 140(1-2), 309-313. doi: 10.1016/j.agee.2010.12.005.
Glaser B., Birk J.J., 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et. Cosmochimica Acta. 82, 39-51. doi: 10.1016/j.gca.2010.11.029.
Kamath R., Rentz J.A., Schnoor J.L., Alvarez P.J. 2004. Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Department of Civil and Environmental Engineering, Seaman’s Center, University of Iowa, Iowa City, Iowa, U.S.A. 52242. doi: 10.1016/S0167-2991 (04)80157-5.
Tang J.C., Wang R.G., Niu X.W., Wang M., Chu H.R., Zhou Q.X., 2010. Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7(12), 3961-9. doi:10.5194/bg-7-3961-2010.
Miya R.K., Firestone M.K., 2001. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual. 30(6), 1911-8. doi:10.2134/jeq2001.1911.
Asiabadi F.I., Mirbagheri S.A., Najafi P., Moatar F., 2014. Phytoremediation of petroleum-contaminated soils around Isfahan Oil Refinery (Iran) by sorghum and barley. Curr World Environ. 9(1), 65. doi:10.12944/CWE.9.1.10.
Liao C., Xu W., Lu G., Deng F., Liang X., Guo C., Dang Z., 2016. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecolo Eng. 92, 10-7. doi: 10.1016/j.ecoleng.2016.03.041.
Pilon-Smits E., 2005. Phytoremediation. Annu Rev Plant Biol. 56, 15-39.
Asadollahi A., Zamani J., Hajabbasi M.A., Schulin R., 2016. Using maize (Zea mays L.) and sewage sludge to remediate a petroleum-contaminated calcareous soil. Soil and Sediment Contem Int J. 25(1), 26-37. doi: 10.1080/15320383.2016.1085835.
Thomas G.W., 1996. Soil pH and soil acidity. In: Methods of Soil Analysis, Part 3- Chemical Methods. 3rd ed. Madison (WI): America Soc Agron. pp. 475-490.
28 .Gee G.W., Bauder J.W., 1986. Particle size of analysis, hydrometer method. Method of Soil Analysis, Part III, 3rd edn. ASA and SSSA, Madison. pp. 383-411.
Nelson D.W., Sommers L.E., 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part III, 3rd edn. ASA and SSSA, Madison. pp. 961-1010.
Rhoades J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis Part III, 3rd edn. ASA and SSSA, Madison. pp. 417-436.
Lindsay W.L., Norvell W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3), 421-8.
Chapman H.D., Pratt P.F., 1961. Methods of Analysis for Soils, Plants and Waters. University of California Division of Agricultural Science. pp. 60.
Minai-Tehrani D., Herfatmanesh A., 2007. Biodegradation of aliphatic and aromatic fractions of heavy crude oil–contaminated soil: A pilot study. Biorem J. 11(2), 71-6. doi:10.1080/10889860701351589.
Bossert I., Bartha R., 1985. Plant growth in soils with a history of oily sludge disposal. Soil Sci. 140(1), 75-7.
Wenzel W.W., 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 321(1), 385-408.
Chaineau C.H., Morel J.L., Oudot J., 1997. Phytotoxicity and plant uptake of fuel oil hydrocarbons. J Environ Qual. 26(6), 1478-1483.
Brandt R., Merkl N., Schultze-Kraft R., Infante C., Broll G., 2006. Potential of vetiver (Vetiveria zizanioides L. Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Phytoremediation. 8(4), 273-84. doi:10.1080/15226510600992808.
Cheema S.A., Khan M.I., Shen C., Tang X., Farooq M., Chen L., Zhang C., Chen Y., 2010. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater. 177(1-3), 384-9. doi: 10.1016/j.jhazmat.2009.12.044.
Pichtel J., Liskanen P., 2001. Degradation of diesel fuel in rhizosphere soil. Environ Eng Sci. 18(3), 145-57. doi:10.1089/109287501750281040.
Hamzah A., Kusuma Z., Utomo W.H., Guritno B., 2012. Siam weeds (Chromolaena odorata L.) for phytoremediation of artisanal gold mine tailings. J Trop Agri. 50(1), 88-91.
Chirakkara R.A., Reddy K.R., 2015. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecolo Eng. 85, 265-74. doi: 10.1016/j.ecoleng.2015.09.029.
Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T., 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348(1), 439-51.
Lin Q., Mendelssohn I.A., 2008. Determining tolerance limits for restoration and phytoremediation with Spartina patens in crude oil-contaminated sediment in greenhouse. Arch Agron Soil Sci. 54(6), 681-90. doi:10.1080/03650340802253937.
Ayeni L.S., Adetunji M.T., OjeniyiS.O., Ewulo B.S., Adeyemo A.J., 2008. Comparative and cumulative effect of cocoa pod husk ash and poultry manure on soil and maize nutrient contents and yield. Am -Eurasian J Sustain Agric. 2(1), 92-97.
Akanni D.I., Ojeniyi S.O., 2007. Effect of different levels of poultry manure on soil physical properties, nutrients status, growth and yield of tomato (Lycopersicon esculentum). J Agron. 1(1), 1-4.
Adeniyan O.N., Ojeniyi S.O., 2005. Effect of poultry manure, NPK 15-15-15 and combination of their reduced levels on maize growth and soil chemical properties. Nigerian J Soil Sci. 15, 34-41.
Uzoma K.C., Inoue M., Andry H., Fujimaki H., Zahoor A., Nishihara E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 27(2), 205-212.
Nigussie A., Kissi E., Misganaw M., Ambaw G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am-Eurasian J Agric Environ Sci. 12(3), 369-376.
Besalatpour A.A., Hajabbasi M.A., Khoshgoftarmanesh A.H., 2010. Reclamation of a petroleum-contaminated calcareous soil using phytostimulation. Soil Sediment Contam. 19(5), 547-59.
Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159(12), 3269-3282.
Ogbonnaya U., Semple K.T., 2013. Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agron. 3(2), 349-75. doi:10.3390/agronomy3020349.
Xu S.Y., Chen Y.X., Wu W.X., Wang K.X., Lin Q., Liang X.Q., 2006. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ. 363(1-3), 206-215.
Escalante-Espinosa E., Gallegos-Martínez M.E., Favela-Torres E., Gutiérrez-Rojas M., 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere. 59(3), 405-13.
Liste H.H., Prutz I., 2006. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere. 62(9), 1411-1420