Evaluation of Blood Biochemical Parameters and Oxidative Stress Biomarkers in Common Carp (Cyprinus carpio) Exposed to Deltamethrin
الموضوعات :
Mehdi Banaei
1
,
Mohsen Forouzanfar
2
,
Mojtaba Jafarinia
3
1 - Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 - Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
تاريخ الإرسال : 02 الإثنين , جمادى الأولى, 1443
تاريخ التأكيد : 02 السبت , شعبان, 1443
تاريخ الإصدار : 05 الخميس , صفر, 1444
الکلمات المفتاحية:
Biochemical parameters,
Oxidative stress,
Common carp,
Delthamethrin,
Pyrethroid pesticide,
ملخص المقالة :
Deltamethrin has magnificent potential for agricultural pest control. The penetration of deltamethrin into aquatic ecosystems can endanger the life of aquatic organisms. In this study, common carp (Cyprinus carpio) was exposed to the sub-lethal concentrations of deltamethrin (0.0, 6, 12, and 18 µg L-1) for 30 days. Then, the biochemical parameters of blood and the biomarkers of oxidative stress in fish were evaluated to assess the toxic effects of deltamethrin. Based on the results deltamethrin exposure altered antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase) and increased lipid peroxidation and protein carbonylation rate in hepatocytes. However, the course of these changes was dose-dependent to deltamethrin. There was a significant reduction in the total antioxidant and glycogen contents in the hepatocytes of fish challenged with deltamethrin. Conversely, exposure of C. carpio to deltamethrin increased aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, creatinine phosphokinase, alkaline phosphatase, and lactate dehydrogenase activities. Deltamethrin significantly inhibited butyrylcholinesterase activity and declined total protein and globulin levels. However, glucose, creatinine, cholesterol, and triglyceride levels significantly increased in the plasma ofC. carpioexposed to deltamethrin. Therefore, these findings demonstrated the potential of deltamethrin to induce cytotoxicity in fishes by disrupting cellular homeostasis and producing reactive oxygen species-induced oxidative stress.
المصادر:
Jiang Q., Jiang Z., Ao S., Gao X., Zhu X., Zhang Z., Zhang X., 2021. Multi-biomarker assessment in the giant freshwater prawn Macrobrachium rosenbergii after deltamethrin exposure. Ecotoxicology and Environmental Safety. 214, 112067. doi: 10.1016/j.ecoenv.2021.112067.
Wu X., Zhang C., An H., Li M., Pan X., Dong F., Zheng Y., 2021. Biological removal of deltamethrin in contaminated water, soils and vegetables by Stenotrophomonas maltophilia XQ08. Chemosphere. 279, 130622. doi: 10.1016/j.chemosphere.2021.130622.
Ullah S., Li Z., Ul Arifeen M. Z., Khan S.U., Fahad S., 2019. Multiple biomarkers based appraisal of deltamethrin induced toxicity in silver carp (Hypophthalmichthys molitrix). Chemosphere. 214, 519-533. doi:10.1016/j.chemosphere.2018.09.145.
Bamber S., Rundberget J.T., Kringstad A., Bechmann R.K. 2021. Effects of simulated environmental discharges of the salmon lice pesticides deltamethrin and azamethiphos on the swimming behaviour and survival of adult Northern shrimp (Pandalus borealis) Aquatic Toxicology. 240, 105966. doi: 10.1016/j.aquatox.2021.105966.
Bothe S.N., Lampert A., 2021. The insecticide deltamethrin enhances sodium channel slow inactivation of human Nav1.9, Nav1.8 and Nav1.7. Toxicology and Applied Pharmacology. 428, 115676. doi: 10.1016/j.taap.2021.115676.
Kong Y., Li M., Shan X., Wang G., Han G., 2021. Effects of deltamethrin subacute exposure in snakehead fish, Channa argus: Biochemicals, antioxidants and immune responses. Ecotoxicology and Environmental Safety. 209, 111821. doi: 10.1016/j.ecoenv.2020.111821.
Li M., Liu X., Feng X., 2019. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere. 219, 155-164. doi:10.1016/j.chemosphere.2018.12.011.
Zhang L., Hong X., Zhao X., Yan S., Ma X., Zha J., 2020. Exposure to environmentally relevant concentrations of deltamethrin renders the Chinese rare minnow (Gobiocypris rarus) vulnerable to Pseudomonas
fluorescens infection. Science of The Total Environment. 715, 136943. doi: 10.1016/j.scitotenv.2020.136943.
Zhou S., Dong J., Liu Y., Yang Q., Xu N., Yang Y., Ai X., 2021. Effects of acute deltamethrin exposure on kidney transcriptome and intestinal microbiota in goldfish (Carassius auratus). Ecotoxicology and Environmental Safety. 225, 112716. doi: 10.1016/j.ecoenv.2021.112716.
Jijie R., Solcan G., Nicoara M., Micu D., Strungaru S.A., 2020. Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. Science of The Total Environment. 698, 134299. doi: 10.1016/j.scitotenv.2019.134299.
Wu Y., Li W., Yuan M., Liu X., 2020. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. Science of the Total Environment. 701, doi:10.1016/j.scitotenv.2019.134870.
Salako A.F., Amaeze N.H., Shobajo H.M., Osuala F.I. 2020. Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata peters, 1859). Scientific African. 9, e00504. doi: 10.1016/j.sciaf.2020.e00504.
El-Sayed Y.S., Saad T.T., 2008. Subacute intoxication of a deltamethrin-based preparation (butox® 5% EC) in monosex nile tilapia, Oreochromis niloticus L. Basic and Clinical Pharmacology and Toxicology. 102(3), 293-299. doi:10.1111/j.1742-7843.2007.
Singh S., Tiwari R.K., Pandey R.S., 2018. Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicology Reports. 5, 85-89. doi: 10.1016/j.toxrep.2017.12.006.
Eni G., Ibor O.R., Andem A.B., Oku E.E., Chukwuka A. V., Adeogun A. O., Arukwe A. 2019. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 225, 108584. doi: 10.1016/j.cbpc.2019.108584.
Vani T., Saharan N., Mukherjee S. C., Ranjan R., Kumar R., Brahmchari P. K. 2011. Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pesticide Biochemistry and Physiology. 101(1), 16-20. doi: 10.1016/j.pestbp.2011.05.007.
Kaur M., Atif F., Ansari R.A., Ahmad F., Raisuddin S., 2011. The interactive effect of elevated temperature on deltamethrin-induced biochemical stress responses in Channa punctata Bloch. Chemico-Biological Interactions. 193(3), 216-224. doi: 10.1016/j.cbi.2011.06.011.
Kong Y., Li M., Guo G., Yu L., Sun L., Yin Z., Li R., Chen X., Wang G., 2021. Effects of dietary curcumin inhibit deltamethrin-induced oxidative stress, inflammation and cell apoptosis in Channa argus via Nrf2 and NF-κB signaling pathways. Aquaculture. 540, 736744. doi: 10.1016/j.aquaculture.2021.736744.
Jiang Q., Ao S., Ji P., Zhou Y., Tang H., Zhou L., Zhang X., 2021. Assessment of deltamethrin toxicity in Macrobrachium nipponense based on histopathology, oxidative stress and immunity damage. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 246, 109040. doi: 10.1016/j.cbpc.2021.109040.
Hong Y., Yang X., Huang Y., Yan G., Cheng Y., 2018. Oxidative stress and genotoxic effect of deltamethrin exposure on the Chinese mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 212, 25-33. doi: 10.1016/j.cbpc.2018.06.004.
Arslan H., Altun S., Özdemir S., 2017. Acute toxication of deltamethrin results in activation of iNOS, 8-OHdG and up-regulation of caspase 3, iNOS gene expression in common carp (Cyprinus carpio L.). Aquatic Toxicology. 187, 90-99. doi: 10.1016/j.aquatox.2017.03.014.
Moss D.V., Henderson A.R., 1999. Clinical enzymology," in Tietz Textbook of Clinical Chemistry. 3rd ed., C. A. Burtis and E. R. Ashwood, Eds., Philadelphia, W.B. Saunders Company. 617-721.
Johnson G., Moore S.W. 2012. Why has butyrylcholinesterase been retained? structural and functional diversification in a duplicated gene. Neurochemistry International. 61(5), 783-797. doi:10.1016/j.neuint.2012.06.016.
Sacks D.B., 1999. Carbohydrates, in Tietz Textbook of Clinical Chemistry. 3rd ed, C. A. Burtis and E. R. Ashwood, Eds., Philadelphia, W.B. Saunders Company. 766-785.
Rifai N., Bachorik P.S., Albers J.J., 1999. Lipids, lipoproteins and apolipoproteins, in Tietz Textbook of Clinical Chemistry (3rd Edition), Philadelphia, W.B. Saunders Company. 809-861.
Johnson A.M., Rohlfs E.M., Silverman L.M., 1999. Proteins, in Tietz Textbook of Clinical Chemistry. 3rd Ed, Philadelphia, W.B. Saunders Company,.77-540.
Hamidipoor F., Pourkhabbaz H.R., Banaee M., Javanmardi S., 2015. Sub-lethal toxic effects of deltamethrin on blood biochemical parameters of japanese quail, Coturnix japonica. Toxicological and Environmental Chemistry. 97(9), 1217-1225.
Góth L.A., 1991. Simple method for determination of serum catalase and revision of reference range. Clinica Chimica Acta, 196,143-152.
Benzie I., Strain J., 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power: The FRAP Assay. Analytical Biochemistry. 239, 70-76.
Banihashemi E.A., Soltanian S., Gholamhosseini A., Banaee M., 2022. Effect of microplastics on yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss). Environmental Science and Pollution Research. 29, 11939–11950
31 Ibrahim A.T.A., Banaee M., Sureda A., 2019. Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology. 225, 108583.
Lu Q., Sun Y., Ares I., Anadón A., Martínez M., Martínez-Larrañaga M.R., Yuan Z., Wang X., Martínez M.A. 2019. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research. 170, 260-281, doi: 10.1016/j.envres.2018.12.045.
Geetha N., 2021. Mitigatory role of butyrylcholinesterase in freshwater fish Labeo rohita exposed to glyphosate based herbicide Roundup®. Materials Today: Proceedings. 47(9), 2030-2035. doi: 10.1016/j.matpr.2021.04.281, 2021.
Ibrahim A.T.A., Banaee M., Sureda A., 2021. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology. 242, 108942. doi:10.1016/j.cbpc.2020.108.
Hatami M., Banaee M., Nematdoost Haghi B., 2019. Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere. 219: 981-988. doi: 10.1016/j.chemosphere.2018.12.077.
Rezaei Shadegan M., Banaee M., 2018. Effects of dimethoate alone and in combination with Bacilar fertilizer on oxidative stress in common carp, Cyprinus carpio. Chemosphere. 208, 101-107.
Soltanian S., Gholamhosseini A., Banaee M., 2021. Effects of exposure to a therapeutic level of methylene blue on antioxidant capacity, haemato-immunological responses and resistance of goldfish, Carassius auratus to Aeromonas hydrophila. Aquaculture Research. 52(6), 2640-2650.
Hayat N.M., Sabullah M.K., Shukor M.Y., Syed M.A., Daha-Lan F.A., Khalil K.A., Ahmad S.A., 2014. Effect of pesticides on cholinesterase activity by using fish as a biomarker. Nanobiology Bionanotechnology. 1, 17-25.
Salles J.B., Cunha Bastos V.L.F., Silva Filho M.V., Machado O.L.T., Salles C.M.C., Giovanni De Simone S., Cunha Bastos J. 2006. A novel butyrylcholinesterase from serum of Leporinus macrocephalus, a neotropical fish. Biochimie. 88(1), 59-68. doi:10.1016/j.biochi.2005.06.017.
Banaee M., Akhlaghi M., Soltanian S., Sureda A., Gholamhosseini A., Rakhshaninejad M., 2020. Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. Ecotoxicology. 29(9), 1500-1515.
Banaee M., Gholamhosseini A., Sureda A., Soltanian S., Fereidouni M.S., Ibrahim A.T.A., 2021. Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). Environmental Science and Pollution Research. 28(8), 9221 - 9234.
Hamidi S., Banaee M., Pourkhabbaz H.R., Sureda A., Khodadoust S., Pourkhabbaz A.R., 2022. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). Environmental Science and Pollution Research. 29, 3718-3732. doi:10.1007/s11356-021-15106-8.
Dawood M.A.O., Abdo S.E., Gewaily M.S., Moustafa E.M., SaadAllah M.S., AbdEl-kader M.F., Hamouda A.H., Omar A.A., Alwakeel R.A., 2020. The influence of dietary β-glucan on immune, transcriptomic, inflammatory and histopathology disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology. 98, 301-311. doi: 10.1016/j.fsi.2020.01.035.
Sayed A.E.D.H., AbdAllah E.A., Hamed M., Soliman H.A.M., 2020. Hepato-nephrotoxicity in late juvenile of Oreochromis niloticus exposed to gibberellic acid: Ameliorative effect of Spirulina platensis. Pesticide Biochemistry and Physiology. 167, 104600.
Dawood M.A.O., Moustafa E.M., Gewaily M.S., Abdo S.E., AbdEl-kader M.F., SaadAllah M.S., Hamouda A.H., 2020. Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquatic Toxicology. 219, 105377. doi: 10.1016/j.aquatox.2019.105377.
Banaee M., Tahery S., Nematdoost Haghi B., Shahafve S., Vaziriyan M., 2019. Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat. Iranian Journal of Fisheries Sciences. 18(2), 242-255. doi:10.22092/ijfs.2019.118174.
Farag M.R., Alagawany M., Khalil S.R., Abd El-Aziz R.M., Zaglool A.W., Moselhy A.A.A., Abou-Zeid S.M., 2022. Effect of parsley essential oil on digestive enzymes, intestinal morphometry, blood chemistry and stress-related genes in liver of Nile tilapia fish exposed to Bifenthrin. Aquaculture. 546, 737322.
Rahman A.N.A., Mohamed A.A.R., Mohammed H.H., Elseddawy N.M., Salem G.A., El-Ghareeb W.R., 2020. The ameliorative role of geranium (Pelargonium graveolens) essential oil against hepato-renal toxicity, immunosuppression, and oxidative stress of profenofos in common carp, Cyrinus carpio (L.). Aquaculture. 517, 734777. doi: 10.1016/j.aquaculture.2019.734777.
Hong Y., Huang Y., Yan G., Huang Z., 2019. Effects of deltamethrin on the antioxidant defense and heat shock protein expression in Chinese mitten crab, Eriocheir sinensis. Environmental Toxicology and Pharmacology. 66,1-6.
Elia A.C., Giorda F., Pacini N., Dorr A.J.M., Scanzio T., Prearo M., 2017. Subacute toxicity effects of deltamethrin on oxidative stress markers in rainbow trout. Journal of Aquatic Animal Health. 29(3), 165-172.
Capoluongo E., Giardina B., Minucci A., 2013. Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency," in Brenner's Encyclopedia of Genetics (Second Edition), K. H. Stanley Maloy, Ed., Academic Press. 2013, 340-342. doi: 10.1016/B978-0-12-374984-0.00569-6.
Ciftci M., Turkoglu V., Coban T.A., 2007. Effects of some drugs on hepatic glucose 6-phosphate dehydrogenase activity in Lake Van fish (Chalcalburnus tarischii Pallas, 1811). Journal of Hazardous Materials. 142(1-2), 415-418. doi: 10.1016/j.jhazmat.2006.09.053.
Banaee M., Sureda A., Shahaf S., Fazilat N., 2015. Protective Effects of Silymarin Extract on Malthion-Induced Zebra Cichlid (Cichlasoma nigrofasciatum) Hepatotoxicity. Iranian Journal of Toxicology. 9(28), 1239-1246, 2015.
Ceyhun S.B., Şentürk M., Ekinci D., Erdoğan O., Çiltaş A., Kocaman E.M., 2010. Deltamethrin attenuates antioxidant defense system and induces the expression of heat shock protein 70 in rainbow trout. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 152(2), 215-223.
Sayeed I., Parvez S., Pandey S., Bin-Hafeez B., Haque R., Raisuddin S., 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety. 56(2), 295-301. doi: 10.1016/S0147-6513(03)00009-5.
Radovanović T.B., Gavrilović B.R., Petrović T.G.,
Despotović S.G, Gavrić J.P., Kijanović A., Mirč M., Kolarov N.T., Faggio C., Prokić M.D., 2021. Impact of desiccation pre-exposure on deltamethrin-induced oxidative stress in Bombina variegata juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 250, 109191.
Dorts J., Silvestre F., Tu H. T., Tyberghein A. E., Phuong N. T., Kestemont P. 2009. Oxidative stress, protein carbonylation and heat shock proteins in the black tiger shrimp, Penaeus monodon, following exposure to endosulfan and deltamethrin. Environmental Toxicology and Pharmacology, 28(2), 302-310.
Sharifinasab Z., Banaee M., Mohiseni M., Noori A., 2016. Vitamin C and Chitosan Alleviate Toxic Effects of Paraquat on Some Biochemical Parameters in Hepatocytes of Common Carp. Iranian Journal of Toxicology. 10(1), 31-40.
Banaee M., Sureda A., Taheri S., Hedayatzadeh F., 2019. Sub-lethal effects of dimethoate alone and in combination with cadmium on biochemical parameters in freshwater snail, Galba truncatula. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 220, 62-70.
Paul T., Shukla S.P., Kumar K., Poojary N., Kumar S., 2019. Effect of temperature on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878): Hematology, biochemistry and genotoxicity evaluation. Science of The Total Environment, 668, 104-114. doi: 10.1016/j.scitotenv.2019.02.443.
Tripathi G., Shasmal J., 2011. Concentration related responses of chlorpyriphos in antioxidant, anaerobic and protein synthesizing machinery of the freshwater fish, Heteropneustes fossilis. Pesticide Biochemistry and Physiology. 99(3), 215-220.
Crupkin A.C., Fulvi A.B., Iturburu F.G., Medici S., Mendieta J., Panzeri A.M., Menone M.L., 2021. Evaluation of hematological parameters, oxidative stress and DNA damage in the cichlid Australoheros facetus exposed to the fungicide azoxystrobin. Ecotoxicology and Environmental Safety. 207, 111286. doi: 10.1016/j.ecoenv.2020.111286.