بهینه سازی مصرف نیتروژن و فسفر در زراعت پایدار ذرت با استفاده از میکوریزا و ورمیکمپوست
الموضوعات : یافته های نوین کشاورزیامید علیزاده 1 , اردلان علیزاده 2 , لادن آریانا 3
1 - دانشیار دانشگاه آزاد اسلامی واحد فیروز آباد
2 - استادیار دانشگاه آزاد اسلامی واحد استهبان
3 - دانشجوی کارشناسی ارشد دانشگاه آزاد اسلامی واحد ارسنجان
الکلمات المفتاحية: عملکرد, ورمی کمپوست, ذرت, میکوریزا, کودهای بیولوژیک,
ملخص المقالة :
این تحقیق به جهت بررسی اثر میکوریز و ورمیکمپوست بعنوان عوامل بیولوژیک در مقایسه با کود شیمیایی نیتروژن و فسفر بر عملکرد و اجزای عملکرد ذرت انجام شد. آزمایش به صورت فاکتوریل در قالب طرح پایه بلوکهای کامل تصادفی در 3 تکرار در شرایط کنترل شده خاک در سال 1388 طراحی و اجرا شد. تیمارها عبارت بود از مصرف کود شیمیایی (F) در سه سطح از منابع کود، اوره، سوپر فسفات ترپیل و پتاسیم شامل: F0 (ازت 0، فسفر 0، پتاس 0 kg/ha) و F1 (ازت 70، فسفر 50، پتاس 30 kg/ha) و F2 (ازت 150، فسفر 100 و پتاس 50 kg/ha)، تیمار ورمی کمپوست در دو سطح (مصرف V1 و عدم مصرف V0) و تیمار میکوریز در دو سطح (مصرف M1 و عدم مصرف M0 ) (جمعیت 105 گرم/ اسپور). نتایج آنالیز واریانس نشان داد بر هم کنش سطوح مختلف ورمی کمپوست، کود شیمیایی و میکوریزا بر عملکرد دانه در سطح 1٪ معنیدار بوده و بر تعداد دانه و وزن 1000 دانه تفاوت معنیداری را نشان نمیدهد. مقایسه میانگین برهمکنش سطوح مختلف ورمی کمپوست، میکوریز و کود شیمیایی تفاوت معنیداری را بر عملکرد دانه نشان داد. به طوری که تیمارهای V1F0M1 و V1F1M1 به ترتیب با میانگین 33/119 و 00/113 گرم در بوته بالاترین میزان عملکرد دانه را نسبت به تیمار V1F2M1 با میانگین 33/106 گرم در بوته را داشته است. و تیمار V1F0M0 با میانگین 00/87 گرم در بوته کمترین میزان عملکرد دانه را داشته است. مقایسه میانگین برهمکنش ورمی کمپوست، سطوح کودی و میکوریزا تفاوت معنیداری را بر وزن 1000 دانه نشان داد که تیمار V1F0M1 با میانگین 33/168 گرم در بوته بالاترین وزن 1000 دانه را داشته است و تیمار V1F1M1 با میانگین 67/134 گرم در بوته کمترین وزن 1000 دانه را داشته است. میکوریز و ورمی کمپوست در سطوح پایین مصرف کودشیمیایی توانستند موجب افزایش عملکرد و اجزای عملکرد دانه شوند.اما در سطوح بالای مصرف کود شیمیایی فعالیت آنها مختل گردید.
1- خدابنده ن. 1371. غلات. انتشارات دانشگاه تهران، 506 صفحه.
2- صالح راستین، ن. 1377. کودهای بیولوژیک. مجله خاک و آب، جلد 12، شماره 3، صفحات 1 تا 36.
3- علیزاده ا.، مظاهری، د. و هاشمی دزفولی، ا. 1376. اثر کود اوره و اوره پوشش شده با گوگرد بر روی عملکرد و اجزای عملکرد ارقام ذرت. پژوهش و سازندگی، سال 10، جلد 3، صفحات 42 تا 45.
4- علیزاده ا. و علیزاده، ا . 1386. اثرات میکوریزا در شرایط متفاوت رطو بت خاک بر جذب عناصر غذایی در ذرت.مجله علمی-پژوهشی ،پژو هش در علوم کشاورزی.سال سوم .شماره اول،صفحه 101-108.
5- علیزاده، ا.، مجیدی، ا.، نادیان، ح.، نورمحمدی، ق. و عامریان، م. 1386. بررسی اثرات تلقیح میکوریزا در سطوح مختلف آبیاری و نیتروژن بر خصوصیات مورفولوژیک و فیزیولوژیک ذرت.مجله علمی – پژوهشی یافته های نوین کشاورزی.سال اول .شماره 4 صفحه 309-320.
6. غلامی، ا. و کوچکی، ع. 1380. میکوریزا در کشاورزی پایدار (ترجمه). انتشارات دانشگاه شاهرود، 212 صفحه.
7. معلم، 1. ح. و عشقیزاده، ح. ر. 1386. کاربرد کودهای بیولوژیک: مزیتها و محدودیتها، خلاصه مقالات دومین همایش ملی بومشناسی ایران، گرگان، ص 47.
8. نادیان، ح. 1377. نقش میکوریز در کشاورزی پایدار. پنجمین کنگره زراعت و اصلاح نباتات ایران، کرج مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، صفحات 3 تا 4.
9- Adsemoye A. O. and Kloeppe, J. W. 2009. Plant-microbes interactions in enhanced fertilizer-use efficincy.Appl microbial biotechnol 85:1-12
10- Alizadeh, O. 2006. Evaluation effect of water stress and nitrogen rates on amount of absorbtion some macro and micro elements in corn plant mycorrhizae and non mycorrhizae. ICOM5, Spain, July 23-28.
11- Anwar, M., Patra, D. D., Chand, S., Alpesh, K., Naqvi, A. A. and Khanuja, S. P. S. 2005. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Communications in Soil Sci. and Plant Analysis. 36: 1737-1746.
12- Arancon, N., Edwards, C. A., Bierman, P., Welch, C. and Metzger, J. D. 2004. influences of Vermicomposts on field strawberries: 1. Effects on growth on yield-Bioresource technal.
13- Cavender, N. D., Atiyeh, R. M. and Knee, M. 2003. Vermicompost stimulates mycorrhizal colonization of roots of sorghum bicolor at the expense of plant growth. Pedobiologia. 47: 85-89.
14- Cox, G., Sanders, F. E., Tinker, P. B. and Wild, J. A. 1976. Ultrastructural evidence relating endophyte transfer in a VAM. In: sanders, F.E. Mosse, B. and press, London.
15- Denmead O. T. and Shaw, R. H. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agronomy Journal, 52:272-274.
16- FITTER, A. H. and GARBAYE, J. 1994. Interaction between mycorrhizal fungi and other soil organism. In: Management of mycorrhizas in agriculture, horticulture and forestry (Ed. By A. D. Robson, L. K. Abbott and N. Malajczuk). p.p. 123-132. kluwer Acodenic publisher.
17- Gaur, A. and Adholeyir, A. 2002. Mycorrhiza inoculation of five tropical fodder crop and inoculums production in marginal soil amended with organic matter. Biol Fertil soils 35:214-218.
18- Hamel, G., Furlan, V. and Smith, D. L. 1991. N2-Fixation and transfer in a field grown Mycorrhizal. Corn and coybean intercrop. Plant Soil, 133:177-185.
19- Iabeawuchi, I. and Onweremalu, E. 2007. Effects of poultry manure on green and waterleaf on degraded vltisol of owerri South Eastern Nigeria. JAVA. 1: 6-53.
20- Ishizuka J. 1992. Trends in biological nitrogen fixation research and application. Plant and Soil, 141:197-209.
21- Jackson A., Jakobsen, I. and Jensen, E. S. 1992. Hyphal transport of N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytologist, 123:61-68.
22- Jat, R. S. and Ahlawat, I. P. S. 2004. Effect of vermicompost, biofertilizer and phosphorus on growth, yield and nutrient uptake by gram (Cicer arietinum) and their residual effect on fodder maize (Zea mays). Indian J . Agric. Sci. 74: 359-361.
23- Jat, R. S. and Ahlawat, I. P. S. 2006. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. J. Sustainable Agric. 28: 41-54.
24- Kapoor, R., Giri, B. and Mukerji, K. G. 2002. Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and carum (Trachyspermum ammi Sprague). World J. Microbiol. Biotechnol. 18: 459-463.
25- Kapoor, R., Giri, B. and Mukerji, K. G. 2004. Improved growth and essential oil yield and quality in foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technol. 93: 307-311.
26- Khaliq, A. and Sander. F. E. 1997. Effects of phosphorus application and vesicular arbusicular mycorrhizal inoculation on The Growth and phosphorus Nutrition of maiz. Journal of plant nutrition, 20(11):1607-1616.
27- Koide, R. T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal in infection. New phytol, 117: 365-386.
28- Koide, R.T. and Li, M. 1990. on host regulation of the vesicular-arbuscular mycorrhizal symbiosis-new phytol. 114: 59-65.
29- Kuppuswamy, G., Jeyabal, A. and Lakshmanam, A. R. 1992 Effect of enriched biogas slurry and farm yard manure on growth and yield of rice. Agriculture Digest.
30.Liu. A. C. Hamel. and Bl. Ma. 2000. Acquistion of cu. Zn. Mn and fe by Mycorrhizal maize. Grown in soil at different P and micronutrient levels:Mycorrhiza 9:331-336.
31- Mamo, M., Rosen. C. J., Halbach, T. R. and Moncrief, J., F. 1998. corn yield and nitrogen uptake in sandy soil amended with municipal Solid wastecom pest. Jurnal of production Agricalture.
32- Mohammad M., Pan, J. W. L. and Kenedy, A. C. 1995. Wheit responses to vesicular. Arlous cular mycorrhizal fungi inoculation of soils from eroded to posequence. Journal of American Soil Science Society, 59: 1086-1090.
33- Nadian, H., Smith, S. E., Alston, A. M. and Murray, R. S. 1996. Effects of soil compaction on plant growth, phophorus uptake and morphological characteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytologist, 133:303-311.
34- Nelseu, C. E., Bogliano, N. C., Furutani, S. C., Safir, G. R. and Sandstra, B. H. 1981. the effect of soil phosphorus levels on mycorrhizal infection of field-grown onion plants and mycorrhizal reproduction. J. Am. Soc. Hortic. Sci. 106: 786-788.
35- Portas C. A. M. and Taylor, H. M. 1975. Growth and surrival of youny plant roots in dry soil. Soil Science, 121:170-175.
36- Roy, D. K. and Singh, B. P. 2006. Effect of level and time of nitrogen application with and without vermicompost on yield, yield attributes and quality of malt barley (Hordeum vulgare). Indian J. Agron. 51: 40-42.
37- Sainz, M. J., Taboada-Castro, M. T. and Vilarino, A. 1998. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes. Plant and Soil. 205: 85-92.
38- Sharma, A. K. 2002. Ahandbook of organic farming Agrobios. India. 627pp.
39- Smith, F. A., Grace, f. j. and Smith, SE. 2009. More than a carbon economy:nutrient trade and ecological sustainability in facultative arbuscular mycorhizal symbiosis.New Phytol 182 :347-358
40- Stark, C., Condron, L. M., Stewart, A., Di H. J. and Ocallaghan, M. 2007. Influence of organic and mineral amendments on microbial soil properties and processes.Appl.soil Ecol.,35;79-93
41- Vamerial, T. M., Saccomani, S., Bona, G., Mosca, M., guarise. and Ganis, A. 2003. A Comparison of root characteristics in relation to nuteient and water stress in tow maiz hybrids plant soil 255:157-167.
42- Warcup, J. H. 1971. Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytologist, 70:41-46.
43- Whingwiri, E. and Kemp, D. R. 1980. Spiklet development and grain yield of the wheat ear in response to applied nitrogen. Aust. J. Agri. Res. 34: 637- 647.
44- Zaller, J. G. 2007. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci. Horticulturae. 112: 191-199.