تاثیر فلز کادمیوم بر میزان آنزیم کاتالاز و بیومارکر دی تیروزین در برخی گونه های زراعی
الموضوعات : یافته های نوین کشاورزیسیده فاطمه موسوی 1 , داود حبیبی 2 , افشین مظفری 3 , نورعلی ساجدی 4
1 - دانشگاه آزاد اسلامی، واحد اراک، ایران
2 - دانشگاه آزاد اسلامی، واحد کرج، گروه زراعت و اصلاح نباتات، کرج، ایران
3 - دانشگاه آزاد اسلامی، واحد ایلام، گروه زراعت و اصلاح نباتات، ایلام، ایران
4 - دانشگاه آزاد اسلامی، واحد اراک، گروه زراعت و اصلاح نباتات، اراک، ایران
الکلمات المفتاحية: آنزیم آنتی اکسیدانت, بیومارکر بیوشیمیایی, کاتالاز و دی تیروزین,
ملخص المقالة :
این آزمایش در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه آزاد اسلامی واحد کرج در سال 89- 1388به اجرا در آمد. آزمایش بصورت فاکتوریل در قالب طرح پایه بلوک های کامل تصادفی با 3 تکرار اجرا شد. فاکتورهای آزمایش شامل میزان کادمیوم در خاک در سه سطح (صفر، 40 و 80 میلی گرم در کیلو گرم خاک خشک) و گونه گیاه زراعی در سه سطح (یونجه یکساله (Medicago rigidula)، ماشک گل خوشه ای (Vicia villosa) وکلزا(Barassica napus)) بود. نتایج آزمایش نشان داد میزان کادمیوم در خاک و گونه های زراعی بر کلیه صفات مورد مطالعه اثر معنی داری داشت. بالاترین میزان بیومارکر دی تیروزین (D-T) در کلزا (با 99/10 میکرومول بر گرم وزن تازه بافت) و پایین ترین میزان در گیاه ماشک گل خوشه ای (با 86/8 میکرومول بر گرم وزن تازه بافت) بود. بیشترین و کمترین میزان آنزیم آنتی اکسیدانت کاتالاز (CAT) به ترتیب متعلق بود یونجه (با 79/55 واحد بر میلی گرم پروتئین) و ماشک گل خوشه ای (با 77/52 واحد بر میلی گرم پروتئین). نتایج آزمایش نشان داد با افزایش غلظت کادمیوم (Cd)در خاک، مقدار بیومارکر دی تیروزین افزایش یافت اما برعکس میزان آنزیم کاتالاز کاهش یافت. دوز 80 و صفر (میلی گرم کادمیوم در کیلوگرم خاک خشک) به ترتیب با 72/11 و 52/6 (میکرومول بر گرم وزن تازه بافت) بالاترین و پایین ترین میزان بیومارکر دی تیروزین را به خود اختصاص دادند. دوز صفر و 80 (میلی گرم کادمیوم در کیلوگرم خاک خشک) به ترتیب با 30/63 و 39/49 (میکرومول بر گرم وزن تازه بافت) بالاترین و پایین ترین میزان آنزیم کاتالاز را به خود اختصاص دادند.
1- Ali, B.M., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singht, S.N. and Singhgh, S.P. 2003. Phytoremediation of lead, nickel and copper by Salix acmophyllaboiss. : Role of Antioxidant Enzymes and Antixidant substances. Bull. Environ. Contam. Toxicol. 70: 462-469.
2- Baisak, R., Rana, D.A., Acharya, P.B.B. and Kar, M. 1994. Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol. 35: 489-495.
3- Becana, M., Dalton, D.A., Moran, J.F., Iturbe-Ormaetxe, I., Matamoros, M.A. and Rubio, M.C. 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant. 109: 372-381.
4- Beladi, M., Habibi, D., Kashani, A., Paknejad, F. and Nooralvandi, T. 2011. Phytoremediation of Lead and Copper by Sainfoin (Onobrychis vicifolia): Role of Antioxidant Enzymes and Biochemical Biomarkers. American-Eurasian J. Agric. & Environ. Sci.10: 440-449.
5- Cakmak, I. and Horst, W.J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max ). Physiol. Plant. 83: 463-468.
6- Chaoui, A., Mazhoudi, S., Ghorbal, M.H. and El-Ferjani, E. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127: 139-147.
7- Casano, L.M., Gomez, L.D., Lascano, H.R., Gonzales, C.A. and Trippi, V.S. 1997. Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiology. 38: 433-440.
8- Comba, M.E., Benavides, M.P. and Tomaro, M.L. 1998. Effect of salt stress on antioxidant defence system in soybean root nodules. Aust. J. Plant Physiol. 25: 665-671.
9- Dalurzo, H.C., Sandalio, L.M., Gomez, M. and Delrio, L.A. 1997. Cadmium infiltration of detached pea leaves: effect on its activated oxygen metabolism. Phyton-Annales Rei Botanicae. 37: 59–64.
10- Davey, M.W., Stals, E., Panis, B., Keulemans, J. and Swennen, R.L. 2005. High-Throughput determination of mabndialdehyde in plant tissues. Analytical Biochemistry. 347: 201-207.
11- Dietz, K.J., Baier, M. and Kramer, U. 1999. Free radicals and active oxygen species as mediators of heavy metal toxicity in plants. In: Prasad M.N.V., Hagemeyer J. (Eds.), Heavy Metal Stress in Plants. From Molecule to Ecosystems. Springer, Berlin, pp 73–97.
12- Fadzillah, N.M., Gill, V., Finch, R.P. and Burdon, R.H. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta. 199: 552-556.
13- Feieraband, J. and Engel, S. 1986. Photoinactivation of catalase in vitro and in leaves. Arch. Biochem. Biophys. 251: 567-576.
14- Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z. and Golda A. 2008. The protective role of selenium in rape seedlings subjected to cadmium stress.Plant Physiol. 165: 833-844.
15- Gallego, S., Benavides, M. and Tomaro, M. 2002. Involvement of an antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regulation.36: 267–273.
16- Groppa, M.D., Tomaro, M.L. and Benarides, M.P. 2007. Polyamines and heavy metal stress: the antioxidant behavior of spermine in Cadmium and Copper treated wheat leaves.Biometals. 20: 185-195.
17- Hegedus, A., Erdei, S. and Horvath, G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress. Plant Science.160: 1085-1093.
18- Hertwig, B., Streb, P. and Feieraband, J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interfer- ing stress conditions. Plant Physiol. 100: 1547-1553.
19- Inzed, D. and Van Montagu, M. 1995. Oxidative stress in plants. Curr. Opin. Biotech. 6: 153.
20- Khatun, S., Ali, M.B., Hahn, E.J. and Paek, K.Y. 2008. Cooper toxicity in withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmentaland Experimental Botany. 64: 279-285.
21- Kling, J. 1997. Phytoremediation of organics moving rapidly into field trials.Environ. Sci. Technol. 31, A129.
22- Kono, Y. and Fridovich, I. 1982. Superoxide radical inhibits catalase. J. Biological Chemistry. 257: 5751-5754.
23- Lin, C.C. and Kao, C.H. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 30: 151-155.
24- Lowry, O.H., N.J., Rosebrough, Farr, A.L. and Randall, R.J. 1951. Protein measurement with the Folin-Phenol reagents. J. Biol. Chem. 193: 275-265.
25- MacRae, E.A. and Ferguson, I.B. 1985. Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiol. Plant. 65: 51-56.
26- Malanga, G. and Puntarulo, S. 1995. Oxidative stress and antioxidant Content in Chlorella vulgaris after exposure to ultraviolet-B radiation, Physiol. Plant. 94: 672-679.
27- Malecka, A., Jarmuszkiewicz, W. and Tomaszewska, B. 2001. Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim. Polon. 48: 687-698.
28- Mashhadi Akbar Boojar, M. and Goodarzi, F. 2007. The Copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere. 67: 2138-2147.
29- Maysa, M. Hatata and E. Adel Abdel-Aal. 2008. Oxidative Stress and Antioxidant Defense Mechanisms in Response to Cadmium Treatments. American-Eurasian J. Agric. & Environ. Sci. 4: 655-669.
30- McEldowney, S., Hardman, D.J. and Waite, S. 1993. Treatment Technologies. In Pollution Ecology and Biotreatment Technologies (Edited by S. McEldowney J. Hardman, and S. Waite). Longman Singapore Publishers, Singapore.
31- Michalak, A. 2006. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress.Polish J. of Environ. Stud. 15: 523-530.
32- Mittova, V., Volokita, M., Guy, M., Tal, M. 2000. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 110: 45.
33- Morita, S., Tasaka, M., Fujisawa, H., Ushimaru, T. and Tsuji, H. 1994. A cDNA clone encoding a rice catalase isozyme. Plant Physiol. 105: 1015-1016.
34- Paglia, D.E. and Valentine W.N. 1987. Studies on the quantitative and qualitative characterization of glutathion proxidase. J. Lab. Med.70:158-165.
35- Page, A.L., Miler, R.H. and Keeney, D.R. 1982. Methods of soil analysis, 2. Chemical and microbiological properties.American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.
36- Pais, I.J. and Benton Jones, J.R. 1997. The hand book of trace elements. Publishing by: St. Luice Press Boca Raton Florida.
37- Polle, A. 2001. Dissectionof the superoxide dismutase-ascorbate-glutathione pathway by metabolic modeling: computer analysis as a step towards flux analysis. Plant Physiol.126: 445-462.
38- Prasad, K.V.S.K., Saradhi, P.P. and Sharmila, P. 1999. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot. 42: 1-10.
39- Ramadevi, S. and Prasad M.N.V. 1998. Copper toxicity in Ceratophyllum demeresum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci. 138: 157.
40- Schutzendubel, A. and Polle, A. 2002. Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Botany. 53: 1351-1365.
41- Shah, K., Kumar, R.G., Verma, S. and Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161: 1135-1144.
42- Sharma, S.S., Kaul, S., Metwally, A., Goyal, K.C., Finkemeier, I. and Dietz, K.J. 2004. Cadmium toxicity to barley (Hordeum vulgar) as affected by varying Fe nutritional status. Plant Sci. 166: 1287- 1295.
43- Somashekaraiah, B.V., Padmaja, K.and Prasad, A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides. in chlorophyll degradation. Physiologia Plantarum. 85: 85–9.
44- Stroinski A. and Kozlowska, M. 1997. Cadmium induced oxidative stress in potato tuber. Acta. Soc. Bot. Pol. 66: 189-195.
45- Tamàs, L., Dudíková, J., Ďurčeková, K., Huttová, J., Mistrík, I. and Zelinová, V. 2008. The impact of heavy metals on the activity of some enzymes along the barley root.Environ. Exp. Bot. 62: 86- 91.
46- Wagner, G. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy.51: 173–211.
47- Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322: 681.
48- Weast, R.C. 1984. CRC Handbook of chemistry and physics, 64th edn. Boca Raton, CRC Press.
49- Yamamoto, Y. , Hachia, A. and Matsumoto, H. 1997. Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiology.38: 1333-1339.
50- Yamasaki, H., Sakihama, Y., Ikehara, N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cell against H2O2. Plant Physiol. 115: 1405.
51- Zhang, J. and Kirkham, M.B. 1994. Drought-stress induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 35: 785-791.