Preconcentration based dispersive liquid-liquid microextraction for spectrophotometric determination of zinc in natural water and human blood after multivariate optimization based on Box-Behnken design
الموضوعات : Journal of the Iranian Chemical ResearchAli Niazi 1 , Mona Akbari 2 , Roza Negahdari 3 , Maryam Sarkhosh 4 , Asiyeh Khosravi 5
1 - Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
2 - Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
3 - Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
4 - Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
5 - Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
الکلمات المفتاحية: Zinc, Experimental design, Dispersive liquid-liquid microextraction, Spectrophotometry, Water sample, Human blood sample,
ملخص المقالة :
A new simple and rapid dispersive liquid-liquid microextraction has been applied to preconcentrate tracelevels of zinc as a prior step to its determination by spectrophotometric method. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected asextraction and dispersive solvent. The optimization strategy is carried out by using two level full factorialdesigns. Results of the two level full factorial design (24) based on an analysis of variance demonstrated thatthe pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant.Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extractionsolvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphsare linear in the range of 30-220 ng mL-1 with detection limit of 11.2 ng mL-1 (3δB/m) and the enrichmentfactor of this method for zinc reached at 130. The relative standard deviation (RSD) is 1.4% (n=7) at 50 ngmL-1 level. The method is successfully applied to the determination of trace amount of zinc in water andhuman blood samples.
[1] M.A. Akl, Anal. Sci. 17 (2001) 561-570.
[2] J. Kawakami, Y. Yamauchi, K. Ohzeki, Anal. Sci. 19 (2003) 1353-1354.
[3] Y. Akhlaghi, M. Kompani-Zareh, Microchim. Acta 148 (2004) 77-85.
[4] J. Chen, K.Ch. Teo, Anal. Chim. Acta 450 (2001) 215-221.
[5] A.N. Anthemidis, D.G. Themelis, S.A. Stratis, Talanta 54 (2001) 37-43.
[6] G. Doner, A. Ege, Anal. Chim. Acta 547 (2005) 14-17.
[7] A. Posyniak, J. Zmudzki, K. Mitrowska, J. Chromatogr. A 1087 (2005) 259-264.
[8] D. Nagaraju, Sh. Da Huang, J. Chromatogr. A 1161 (2007) 89-97.
[9] M. Rezaee, Y. Assadi, S.M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A
1101 (2006) 1-9.
[10] A. Bidari, E. Zeini Jahromi, Y. Assadi, M.R. Milani Hosseini, Microchem. J. 87 (2007) 6-12.
[11] E. Zeini Jahromi, A. Bidari, Y. Assadi, M.R. Milani Hosseini, M.R. Jamali, Anal. Chim. Acta 585
(2007) 305-311.
[12] P. Liang, H. Sang, Anal. Biochem. 380 (2008) 21-25.
[13] M. Ramezani, S. Rahmani, J. Iranian Chem. Res. 3 (2010) 279-286.
[14] M. Rezaee, Y. Yamini, M. Faraji, J. Chromatogr. A 1217 (2010) 2342-2357.
[15] R.E. Rivas, L. Lopez-Garcia, M. Hernandez-Cordoba, Spectrochim. Acat Part B 64 (2009) 329-334.
[16] P. Liang, E. Zhao, F. Li, Talanta 77 (2009) 1854-1857.
[17] N. Shokoufi, F. Shemirani, Y. Assadi, Anal. Chim. Acta 597 (2007) 349-356.
[18] Z. Xiao-Huan, W. Qiu-Hua, Z. Mei-Yue, X. Guo-Hong, W. Zhi, Chin. J. Anal. Chem. 37 (2009) 161-
168.
[19] M. Khajeh, J. Hazard. Mat. 177 (2009) 385-389.
[20] S.M. Macedo, R.M. de Jesus, K.S. Garcia, V. Hatje, A.F. de Queiroz, S.L.C. Ferreira, Talanta 80 (2009)
974-979