Hybrid-DFT study and NBO interpretations of the conformational behavior of 1,2-dihalodisilanes
الموضوعات : Journal of the Iranian Chemical ResearchDavood Nori-Shargh 1 , Seiedeh Negar Mousavi 2 , Hooriye Yahyaei 3 , Somayye Yazdani 4 , Bahareh Ahmadi 5
1 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
4 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
5 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
الکلمات المفتاحية: Stereoelectronic interactions, Ab initio, NBO, Generalized Anomeric Effects, 1, 2- dihalodisilanes,
ملخص المقالة :
Hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBOinterpretation were used to investigate the conformational behavior of 1,2-dihalodisilanes[halo=F (1), Cl (2), Br (3), I (4)]. The B3LYP/Def2-TZVPP results showed that the anticonformations of compounds 1-4 are more stable than their corresponding gaucheconformations. The stability of the anti conformation compared to the gauche conformationincreases from compound 1 to compound 4. The NBO analysis of donor-acceptor interactionsshowed that the generalized anomeric effect (GAE) is in favor of the gauche conformations ofcompounds 1 and 2. Contrary to compounds 1 and 2, GAE is in favor of the anti conformationsof compounds 3 and 4. The GAE values calculated (i.e. GAEanti-GAEgauche) increase fromcompound 1 to compound 4. On the other hand, the calculated dipole moment values for thegauche conformations increase from compound 1 to compound 3 but decreases from compound3 to compound 4. Based on the results obtained, there is no conflict between the GAE and theelectrostatic model impacts on the conformational preferences in compounds 1-3 but theelectrostatic model can not rationalize the increase of the instability of the gauche conformationof compound 4 compared to its anti conformation on going from compound 3 to compound 4.Consequently, in the conflict between the GAE and the electrostatic model, the former succeededin accounting for the increase of the anti conformation stability from compound 1 to compound4. There is a direct correlation between the calculated GAE, Δ[rSi-Si(G)-rSi-Si(A)] parameters. Thecorrelations between the GAE, bond orders, ΔGAnti-Gauche, ΔG‡(Gauche→Gauche′, C2v),ΔG‡(Anti→Gauche, C2), dipole-dipole interactions, structural parameters and conformationalbehaviors of compounds 1-4 have been investigated.
[1] J.E. Lovelock, Nature. 230 (1971) 379-381.
[2] M.J. Molina, F.S. Rowland, Nature. 249 (1974) 810-812.
[3] F.S. Rowland, Am Sci. 77 (1989) 36-45.
[4] D.A. Keller, D.C. Roe, P.H. Lieder, Fundam. Appl. Toxicol., 30 (1996) 213-219.
[5] IARC Monographs on the Evaluation on the Carcinogenic Risk of Chemicals to Man, World Health
Organization, International Agency for Research on Cancer: Geneva 20, (1979).
[6] B.M. Wong, M.M. Fadri, S. Raman, J. Comput. Chem., and references therein, 29 (2008) 481-487.
[7] T. Hirano, S. Nonoyama, T. Miyajima, Y. Kurita, T. Kawamura, H. Sato, J. Chem. Soc. Chem.
Commun., (1986) 606-607
[8] P. Huber-Walchli, H.H. Gunthard, Spectrochim. Acta Part A. 37A (1981) 285-304.
[9] W.D. Gwinn, K.S. Pitzer, J. Chem. Phys. 16 (1948) 303-309.
[10] K. Kveseth, Acta Chem. Scand. A. 29 (1975) 307-311.
[11] H.J. Bernstein, J. Chem. Phys. 17 (1949) 258- 261.
[12] K. Tanabe, Spectrochim. Acta Part A. 28A (1972) 407-424.
[13] Y. A. Pentin and V. M. Tatevskii, Dokl. Akad. Nauk SSSR, 108 (1956) 290.
[14] T.H. Can, J.B. Peel, G.D. Willett, J. Chem. Soc. Faraday Trans. 2 (1977) 965- 290.
[15] S. Mizushima, I. Watanabe, T. Simanouti, S. Yamaguchi, J. Chem. Phys. 17 (1949) 591-594.
[16] H. Takeo, C. Matsumura, Y. Morino, J. Chem. Phys. 84 (1986) 4205-4210.
[17] K.B. Wiberg, T.A. Keith, M.J. Frisch, M. Murcko, J. Phys. Chem. 99 (1995) 9072-9079.
[18] K.B. Wiberg, M.A. Murcko, J. Phys. Chem. 91 (1987) 3616-3620.
[19] D. Nori-Shargh, J.E. Boggs, Struct. Chem., 22 (2011) 253-262.
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J.E. Knox, H.P Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
KomaromiI, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian
03, Revision B.03, Gaussian, Inc, Wallingford (2004).
[21] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
[22] C. Lee, W. Yang, R.G. Parr , Phys Rev B. 37 (1988) 785-789
[23] W.J. Hehre, L. Radom, P.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory, Wiley, New
York. (1986).
[24] J.M. Seminario, P. Politzer, (Eds) Modern Density Function Theory, A Tool for Chemistry, Elsevier,
Amsterdam. (1995).
[25] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales,
Weinhold F, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, NBO Version
5.G. (2004).
[26] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer, F. Bernardi, J Am Chem Soc. 99 (1977) 8379-
8388.
[27] E.L. Eliel, S.H. Wilen, Stereochemistry of organic compounds, Wiley, New York. (1994).
[28] E. Juaristi, G. Cuevas, The anomeric effect, CRC Press. Inc, Florida. (1995).
[29] P. Dionne, M. St-Jacques, J Am Chem Soc. 109 (1987) 2616-2623.
[30] W.F. Bailey, E.L. Eliel, J Am Chem Soc. 96 (1974) 1798-1806.
D. Nori-Shargh & et al. / J. Iran. Chem. Res. 4 (2011) 207-217
217
[31] D. Nori-Shargh, F. Roohi, F. Deyhimi, R. Naeem-Abyaneh. J Mol Struct (THEOCHEM). 763 (2006)
21-28.
[32] D. Nori-Shargh, F. Deyhimi, J.E. Boggs, S. Jameh-Bozorgh, R. Shakibazadeh, J Phys Org Chem. 20
(2007) 355-364.
[33] D. Nori-Shargh, H. Yahyaei, J Mol Struct (THEOCHEM). 913 (2009) 8-15.
[34] D. Nori-Shargh, N. Hassanzadeh, M. Kosari, S. Sharifi, J Mol Struct (THEOCHEM). 940 (2010)
129-134.
[35] A. Zeinalinezhad A, Nori-Shargh D, Abbasi-Bakhtiari Z, Boggs JE J Mol Struct (THEOCHEM). 947
(2010) 52-57.
[36] D. Nori-Shargh, H. Yahyaei, J.E. Boggs, J. Mol. Graph. Model. 28 (2010) 807-813.
[37] D. Nori-Shargh, J.E. Boggs, J Phys Org Chem. Doi:10.1002/poc.1728. (2010).
[38] K.B. Wiberg, M. Murcko, J. Phys. Chem. 91 (1987) 3616-3620.