A theoretical study on interactions between Berberine as an anticancer drug and DNA
الموضوعات : Journal of the Iranian Chemical ResearchAiyoub Parchehbaf Jadid 1 , Leila Zarefatin 2 , Leila Javadi 3
1 - Department of Applied Chemistry, Ardabil branch, Islamic Azad University, Ardabil, Iran
2 - Department of Applied Chemistry, Ardabil branch, Islamic Azad University, Ardabil, Iran
3 - Department of Applied Chemistry, Ardabil branch, Islamic Azad University, Ardabil, Iran
الکلمات المفتاحية: DNA, Intercalator, Berberine, density functional theory,
ملخص المقالة :
In this study, we present the work on the physicochemical interaction between the anti-cancer alkaloidberberine (BRB) and DNA with the purpose of designing drugs that interact more with DNA. Molecularmodeling on the complex formed between berberine and DNA presented that this complex was undeniablyfully able of participating in the formation of a stable intercalation site. Besides, the molecular geometries ofberberine and the DNA bases (Adenine, Guanine, Cytosine and Thymine) were optimized with the aid of theB3LYP/6-31G method. This intercalator has a large polarizability and is a good electron acceptor, while basepairs are good electron donors. B3LYP/6-31G stabilization energies of intercalator… DNA base paircomplexes are large (-7.65 kcal/mol for AT···BRB and -3.58 kcal/mol for GC···BRB). It was eventuallyconcluded that the dispersion energy and the electrostatic interaction influenced the stability of theintercalator···DNA base pair complexes. The results exhibited that the BRB changes affected the DNAstructure with reference to the bond length, the bond angle, the torsion angle and the charges.
[1] D.S. Bhakuni, S. Jain, in The Alkaloids (Brossi, A.,ed.), Vol. 28, pp. 95-181, Academic Press, New York,
1986.
[2] W.A. Creasy, Biochem. Pharmacol. 28 (1979) 1081-1084.
[3] X. Tian, Y. Song, H. Dong, Y. Baoxian, Bioelectrochemistry 73 (2008) 18-22.
[4] M. Meyerson, J. Clin. Oncol. 18 (2000) 2626-2634..
[5] C.L. Kuo, C.C. Chou, B.Y. Yung, Cancer Lett. 93 (1995) 193-200.
[6] I.W. Yang, C.C. Chou, B.Y. Yung, Arch. Pharmacol. 354 (1996) 102-106.
[7] S. Letasiova, S. Jantova, L. Cipak,M. Muckova, Cancer Lett. 239 (2006) 254-262.
[8] P.-L. Peng, Y.-S. Hsieh, C.-J.Wang, J.-L. Hsu, F.-P. Chou, Appl. Pharmacol. 214 (2006) 8-15.
[9] M.M. Islam, R. Sinha, G.S. Kumar, Biophys. Chem. 125 (2007) 508-52.
[10] T.-K. Li, E. Bathory, E.J. LaVoie, A.R. Srinivasan, W.K. Olson, R.R. Sauers, L.F. Liu, D.S. Pilch,
Biochemistry 39 (2000) 7107-7116.
[11] S. Mazzini, M.C. Bellucci, R. Mondelli, Bioorg. Med. Chem. 11 (2003) 505-514.
[12] K. Bhadra, G. Suresh Kumar, S. Das, Md. M. Islam, M. Maiti, Bioorg. Med. Chem. 13 (2005) 4851-
4855.
[13] M.W. Davidson, I. Lopp, S. Alexander,W.D. Wilson, Nucleic Acids Res. 4 (1977) 2697-2712.
[14] D. Debnath, G. Suresh Kumar, R. Nandi, M. Maiti, Indian J. Biochem. Biophys. 26 (1989) 201-208.
[15] A. Saran, S. Srivastava, E. Coutinho, M. Maiti, Indian J. Biochem. Biophys. 32 (1995) 74-77.
[16] F. M. Chen, J. Biomol. Struct. Dyn. 1 (1983) 925-937.
[17] G. T. Walker, M. P. Stone, T. R. Krugh, Biochemistry 24 (1985) 7462-7471.
[18] C. C. Hardin, G. T. Walker, I. Jr. Tinoco, Biochemistry 27 (1988) 4178-4784.
[19] J. B. Chaires, J. Biol. Chem. 261(1986) 8899-8909.
[20] E. Jimenez-Garcia, J. Portugal, Biochemistry 31 (1992) 11641-11646.
[21] U. Diederichsen, Angew. Chem. Int. Ed. Engl. 36 (1997) 2317-2319.
[22] J.B. Chaires, Biophys. Chem. 35 (1990) 191-202.
[23] M.P. Fontaine-Aupart, H. Laguitton-Pasquier, R. Pansu, L. Brain, E. Renault, M.C. Marden, C. Rivalle,
J. Chem. Soc. Perkin. Trans. 2 (1996) 1767-1774.
[24] J. Dolenc, U. Borstnik, M. Hodoscek, J. Koller and D. Janezic, J. Mol. Struct. (TEOCHEM), 718 (2005)
77-84.
[25] M. Elstner, P. Hobza, T. Frauenheim, S. Suhai and E. Kaxiras, J. Chem. Phys., 114 (2001) 5149-5155.
[26] T. M. EL-Gogary, The role of charge transfer complex formation on the overall structure activity
relationships of DNA radioprotectants and radiosensitizers. Ph.D. Thesis, Mansoura University, Egypt/De
Montfort University, Leicester, UK, 1998.
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V.
G.Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A.
D.Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi,
B.Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.Ortiz, B.
B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,P. M. W. Gill, B.
Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J. A.
Pople, Gaussian Inc. Pittsburgh PA, 1998.
[28] C. Bayly, P. Cieplak, W.D. Cornell, P.A. Kollman, J. Phys. Chem. 97 (1993) 10269-10280.
[29] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D. C. Spellmeyer, T. Fox,
J.W. Caldwell, P.A. Kollman, J. Am. Chem Soc. 117 (1995) 5179-5197. .
[30] P. Hobza, J. Sponer, T. Reschel, J. Comput. Chem. 16 (1995) 1315-1325.
[31] P. Hobza, R. Zahradnik, Intermolecular Complexes, Elsevier, Amsterdam, 1988.
A. Parchehbaf-Jadid et al., J. Iranian Chem. Res. 5 (3) (2012) 143-153
153
[32] J.G.C.M. van Duijneveldt-van de Rijdt, F.B. van Duijneveldt, J.H. van Lenthe, Chem. Rev. 94 (1994)
1873-1885.
[33] U. Bren,M. Zupan, F.P. Guengerich, J. Mavri, J. Org. Chem. 71 (2006) 4078-4084.
[34] U. Bren, F.P. Guengerich, J. Mavri, Chem. Res. Toxicol. 20 (2007) 1134-1140.
[35] M.J. Frisch, J.E.Del-Bene; J. S. Binkley, H.F. Schaefer, J. Chem. Phys. 84 (1986) 2279-2286.
[36] D.W. Schwenke, D.G. Truhlar, J. Chem. Phys. 82 (1985) 2418-2432.