Neighboring group’s effect in sigmatropic migration on indol rings. A theoretical study and NBO analysis
الموضوعات : Journal of the Iranian Chemical ResearchSaeed Jameh-Bozorghi 1 , Zahra Javanshir 2 , Fatemeh Naseri 3 , Maryam Darvishpoor 4
1 - Chemistry Department, Faculty of science, Islamic Azad University, Arak Branch, Arak, Iran
2 - Chemistry Department, Faculty of science, Islamic Azad University, Arak Branch, Arak, Iran
3 - Chemistry Department, Faculty of science, Islamic Azad University, Arak Branch, Arak, Iran
4 - Chemistry Department, Faculty of Science, Razi University, Kermanshah, Iran
الکلمات المفتاحية: DFT calculation, Borotropic shift, Prototropic shift, Indol,
ملخص المقالة :
Structural properties, energies behavior and NBO analysis was performed for1-5 prototrophic shift endinelboran where substitutions like H, CH3 and CF3 that were placed on Benzene were investigated by usingDFT-B3LYP/6-311+G** level of theory. The Results show that, -BH2 shift doesn’t take place and a kind of[1,3] shift for borotrophic occured. In prototrophic shift, however, [1,5] transition easily happened. TheResults of calculations using B3LYP, HF and MP2 [basic seyies 6-311+G**] show that Ea for CF3substitutionis is lower than H substitution; also, this amount of activation energy for CH3 was lower thanCF3. But for prototrophic shift, activation energy changes, as will be shown in the following CF3, H and CH3tables. Finally, prototrophic shift activation energy in proportion to that of borotrophic shift is higher. Loweramount of activation energy in bortorphic shift show that rotation of bore on the cycle can happen in theambient temperature.
[1] I.D. Gridnev, A.Meller, Main Group Metal Chem, 21(1998)121-128.
[2] K.B . Wiberg and R.A. Fenoglio, J. Am. Chem, Soc. 90 (1968) 3395-3397.
[3] A.V. Kisin, V.A. Kovenevsky, N.M. Sergeyev, and Yu.A. Ustynyuk, J. Organomet. Chem, 34 (1972) 93-
104.
S. Jameh-Bozorghi et al., J. Iranian Chem. Res. 5 (2) (2012) 73-84
84
[4] Yu.A. Ustynyuk, P.I. Zakharov, A.A. Azizov, V.K. Potapov, and I. M. Pribytkova, J. Organomet. Chem,
88 (1975) 37-64.
[5] Yu.K. Grishin, N.M. Sergeyev, and Yu.A. Ustynyuk, Organomet. Magnetic Resonance, 4 (1972) 377-
390.
[6] A.P. Hagen and P.J. Russa, J. Organomet. Chem, 51 (1973) 125-133.
[7] A. Davison and P. E. Rakita, Inorg. Chem, 9 (1970) 289-294.
[8] P.C. Angus and S.R. Stobart, J. Chem. Soc. Dalton Trans, (1974) 2374-2380.
[9] N.M. Sergeyev,G. I. Avramenko, A.V. Kisin, V.A. Kovenevsky, and Yu. A. Ustynyuk, J. Organomet.
Chem, 32 (1971) 55-77.
[10] A. F. Cuthbertson and C. Glidewell, J. Organomet, Chem, 221 (1981) 19-31.
[11] G. Wilkinson and T.S. Piper, Inorg. Nucl. Chem., 2 (1956) 32; (b) T.S. Piper and G. Wilkinson, Inorg.
Nucl. Chem., 3 (1956) 104-124.
[12] D. Nori-Shargh, H. Aghabozorgh, K. Zare, M.R. Talei, Bavil Olyai, and S. Jameh-Bozorghi,
Phosphorus, Sulfur and Silicon, 178(2003) 341-351.
[13] A. D. Becke, J. Chem. Phys., 98 (1993) 5648-5652.
[14] C. Lee, W. Yang, and R. G. Parr, Phys. Rev., 37 (1998) 785-789.
[15] W.J. Hehri, L. Radom, P.V.R. Schleyer, and J.A. Pople, Ab initio Molecular Orbital Theory Wiley, New
York, 1986.
[16] J.M. Seminario and P.Politzer (eds.), Modern Density Function Theory, A Tool for Chemistry, Elsevier,
Amsterdam, 1995.
[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G.
Zakrazewski, J.A. Montgomery, R.E. Startmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels,
K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui. K. Morokuma, D.K. Malik, A.D.
Rabuck, K. Raghavachar, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanyakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson,W. Chen, M.W.Wong, J.L. Andres,
M. Head-Gordon, E.S. Replogle, and J.A. Pople, GAUSSIAN 98 (Revision A3), Gaussian Inc,
Pittsburgh, PA, (1998).