Characterization and quantification of the cross-linking of linear low density polyethylene with silane grafting by Fourier transform infrared (FTIR) spectroscopy
الموضوعات : Journal of the Iranian Chemical ResearchElaheh Konoz 1 , Amir H. M. Sarrafi 2 , A. Feazbakhsh 3 , Elham Zamani 4
1 - Department of Chemistry, Faculty of Science, Islamic Azad University, Central-Tehran Branch,
P.O. Box 13185/768, Tehran, Iran
2 - Department of Chemistry, Faculty of Science, Islamic Azad University, Central-Tehran Branch,
P.O. Box 13185/768, Tehran, Iran
3 - Department of Chemistry, Faculty of Science, Islamic Azad University, Central-Tehran Branch,
P.O. Box 13185/768, Tehran, Iran
4 - Department of Chemistry, Faculty of Science, Islamic Azad University, Central-Tehran Branch,
P.O. Box 13185/768, Tehran, Iran
الکلمات المفتاحية: FTIR, LLDPE, Silane grafting, Cross-linking,
ملخص المقالة :
The way of making cross-linkable polyethylene through silane grafting has gained much attention in recentyears because of its various advantages such as easy processing, low cost and capital investment andfavorable properties in the processed materials. This work deals with silane grafting and moisture crosslinkingof linear low density polyethylene (LLDPE). The grafting reaction was performed in an internalmixer using di-cumyl peroxide (DCP) as initiator and vinyl-trimethoxy silane (VTMOS) as grafting agent.Characterization and quantification of the grafting was performed by Fourier transform infrared (FTIR)spectroscopy. The cross-linking was done by subsequent immersion of grafted samples in hot water. Theeffect of silane and peroxide concentration was more considerable than time. The order of degradationtemperature was: cross-linked LLDPE then grafted LLDPE and at last LLDPE.
[1] C. Jiao, Z. Wang, Z. Gui, Y. Hu, Eur. Polym. J. 41 (2005) 1204-1211.
[2] S. Ultsch, H.G. Fritz, Plast. Rubber Process Appl. 13 (1990) 81-91.
[3] M.P. Munoz, P.M.D. Vargas, M.M. Werlang, I. Valeria, P. Yoshida, R.S. Mauler, J. Appl. Polym. Sci.
82 (2001) 3460-3467.
[4] H.G. Scott, US patent no.3646155, 1972.
[5] B.A. Sultan, M. Palmlof, Plast. Rubber Compos. Process. Appl. 21 (1994) 65-73.
[6] H.G. Scott, J.F. Humpries, Mod. Plast 50 (1973) 82-87.
[7] B. Thomas, M. Bowrey, Wire. J. 10 (1977) 88-94.
[8] D. Munteanu, Polymer 49 (1985) 479-509.
[9] P. Swarbrick, W.J. Green, C. Maillefer, US Patent no. 4117195, 1978.
[10] Y.T. Shieh, J.S. Liau, T.K. Chen, J. Appl. Polym. Sci. 81 (2001) 86-196.
[11] K.E. Oliphant, K.E. Russell, W.E. Baker, Polymer 36 (1995) 1597-1603.
[12] R. Anderlink, H.G. Fritz, Int. Polym. Sci. 11 (1992) 3-10.
[13] A.J. Peacock, Handbook of polyethylene, structures, properties, and applications. Marcel Dekeker, New
York 2000.
E. Konoz et al., J. Iranian Chem. Res. 5 (1) (2012) 31-38
38
[14] M. Narkis, A. Tzur, A.H.G. Vaxman, Polymer Engin. Sci. 25 (1985) 857-862.
[15] T. Hjertberg, M. Palmolf, B.A. Sultan, J. Appl. Polym. Sci. 42 (1991) 1185-1191.
[16] G.S. Ahmed, M. Gilbert, S. Mainprize, M. Rogerson, J. Plas Rubber Composite 38 (2009) 13-19.
[17] Y.T. Shieh, C.M. Liu, J. Appl. Polym. Sci. 74 (1999) 3404-3411.
[18] A.K. Sen, B. Mukherjee, A. Battacharyya, P.P. De, A.K. Bhowmick, J. Appl. Polym. Sci. 44 (1992)
1153-1164.
[19] C. Rosales, R. Perera, M. Ichazo, J. Gonzalez, H. Rojas, A. Sanchez, A.D. Barrios, J. Appl. Polym. Sci.
70 (1998) 161-176.
[20] J.A. McCormick, J.R. Royer, C.R. Hwang, S.A. Khan, J. Polym. Sci. 38 (2000) 2468-2479.
[21] Y. Shieh, T.H. Tsai, J. Appl. Polym. Sci. 69 (1998) 255-261.
[22] C. Jiao, Z. Wang, Z. Gui, Y. Hu, Eur. Polym. J. 41 (2005) 1204-1209.